SEARCH
Search DetailsSUDA Hiraku
Life Science Division | Assistant Professor |
Biochemistry&Molecular Biology |
- E-Mail:suda222
mail.saitama-u.ac.jp
Researcher information
■ Degree■ Field Of Study
■ Career
- Apr. 2025 - Present
- Oct. 2024 - Present
- Apr. 2024 - Present
- Apr. 2022 - Mar. 2024
- Oct. 2020 - Mar. 2022, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Toyota laboratory, Postdoctoral fellow, Japan
- 2017 - 2019
- Oct. 2015 - Sep. 2020, The Graduate University for Advanced Studies (SOKENDAI), School of Life Science, Department of Basic Biology (Five-year Doctoral-course Program)
Performance information
■ Paper- Calcium signaling triggers early high humidity responses in Arabidopsis thaliana.
Saad Hussain; Hiraku Suda; Christine H Nguyen; Dawei Yan; Masatsugu Toyota; Keiko Yoshioka; Eiji Nambara
Proceedings of the National Academy of Sciences of the United States of America, Volume:121, Number:51, First page:e2416270121, Dec. 2024, [Reviewed], [International magazine]
Plants need to adapt to fluctuating atmospheric humidity and respond to both high and low humidity. Despite our substantial understanding of plant responses to low humidity, molecular mechanisms underlying the high humidity (HH) response are much less well understood. In this study, we investigated early responses to HH in Arabidopsis. Expression of CYP707A3, encoding an abscisic acid (ABA) 8'-hydroxylase, is induced by HH within 10 min, which leads to a decrease in foliar ABA level. We identified that the combined action of CAMTA3 and CAMTA2 transcription factors regulate this response. This regulation requires a calmodulin (CaM)-binding domain of CAMTA3. Transcriptomes of HH-regulated genes are enriched in those related to calcium signaling, including cyclic nucleotide-gated ion channels (CNGCs). Moreover, HH induces CNGC2- and CNGC4-mediated increases in cytosolic Ca2+ concentrations in leaves within a few minutes. We also found that CNGC2, CNGC4, and CAMTAs participate in HH-induced hyponastic movement of petioles. Taken together, our results indicate that CNGC2/CNGC4-Ca2+-CaM-CAMTA3/CAMTA2 acts as a primary regulatory module to trigger downstream HH responses.
English, Scientific journal
DOI:https://doi.org/10.1073/pnas.2416270121
DOI ID:10.1073/pnas.2416270121, PubMed ID:39661062 - Cell-free translation system with artificial lipid-monolayer particles as a unique tool for characterizing lipid-monolayer binding proteins.
Fu Kuroiwa; Hiraku Suda; Maho Yabuki; Kimie Atsuzawa; Haruhiko Yamaguchi; Masatsugu Toyota; Yasuko Kaneko; Satoshi Yamashita; Seiji Takahashi; Yuzuru Tozawa
Bioscience, biotechnology, and biochemistry, Mar. 2024, [Reviewed], [International magazine]
Methods for functional analysis of proteins specifically localizing to lipid monolayers such as rubber particles and lipid droplets are limited. We have succeeded in establishing a system in which artificially prepared lipid monolayer particles are added to a cell-free translation system to confirm the properties of proteins that specifically bind to lipid monolayers in a translation-coupled manner.
English, Scientific journal
DOI:https://doi.org/10.1093/bbb/zbae026
DOI ID:10.1093/bbb/zbae026, PubMed ID:38444196 - Integration of long-range signals in plants: A model for wound-induced Ca2+, electrical, ROS, and glutamate waves.
Hiraku Suda; Masatsugu Toyota
Current opinion in plant biology, Volume:69, First page:102270, Last page:102270, Aug. 2022, [Reviewed], [Invited], [Lead], [International magazine]
Plants show long-range cytosolic Ca2+ signal transduction in response to wounding. Recent advances in in vivo imaging techniques have helped visualize spatiotemporal dynamics of the systemic Ca2+ signals and provided new insights into underlying molecular mechanisms, in which ion channels of the GLUTAMATE RECEPTOR-LIKE (GLR) family are critical for the sensory system. These, along with MECHANOSENSITIVE CHANNEL OF SMALL CONDUCTANCE-LIKE 10 (MSL10) and Arabidopsis H+-ATPase (AHA1) regulate the propagation system. In addition, membrane potential, reactive oxygen species (ROS), and glutamate waves operate in parallel to long-range signal transduction. We summarize these findings and introduce a model that integrates long-range Ca2+, electrical, ROS, and glutamate signals in systemic wound responses.
English, Scientific journal
DOI:https://doi.org/10.1016/j.pbi.2022.102270
DOI ID:10.1016/j.pbi.2022.102270, PubMed ID:35926395 - The memory system of Venus flytrap mediated by calcium ions
Hiraku Suda
BSJ-Review, Volume:12, Number:89, 2021, [Invited], [Lead]
Japanese, Symposium - Calcium dynamics during trap closure visualized in transgenic Venus flytrap
Hiraku Suda; Hiroaki Mano; Masatsugu Toyota; Kenji Fukushima; Tetsuro Mimura; Izuo Tsutsui; Rainer Hedrich; Yosuke Tamada; Mitsuyasu Hasebe
Nature Plants, Volume:6, Number:10, First page:1219, Last page:1224, Oct. 2020, [Reviewed], [Lead], [International magazine]
The leaves of the carnivorous plant Venus flytrap, Dionaea muscipula (Dionaea) close rapidly to capture insect prey. The closure response usually requires two successive mechanical stimuli to sensory hairs on the leaf blade within approximately 30 s (refs. 1-4). An unknown biological system in Dionaea is thought to memorize the first stimulus and transduce the signal from the sensory hair to the leaf blade2. Here, we link signal memory to calcium dynamics using transgenic Dionaea expressing a Ca2+ sensor. Stimulation of a sensory hair caused an increase in cytosolic Ca2+ concentration ([Ca2+]cyt) starting in the sensory hair and spreading to the leaf blade. A second stimulus increased [Ca2+]cyt to an even higher level, meeting a threshold that is correlated to the leaf blade closure. Because [Ca2+]cyt gradually decreased after the first stimulus, the [Ca2+]cyt increase induced by the second stimulus was insufficient to meet the putative threshold for movement after about 30 s. The Ca2+ wave triggered by mechanical stimulation moved an order of magnitude faster than that induced by wounding in petioles of Arabidopsis thaliana5 and Dionaea. The capacity for rapid movement has evolved repeatedly in flowering plants. This study opens a path to investigate the role of Ca2+ in plant movement mechanisms and their evolution.
Springer Science and Business Media {LLC}, English, Scientific journal
DOI:https://doi.org/10.1038/s41477-020-00773-1
DOI ID:10.1038/s41477-020-00773-1, ORCID:84744495, PubMed ID:33020606 - Gene amplification: mechanisms and involvement in cancer.
Atsuka Matsui; Tatsuya Ihara; Hiraku Suda; Hirofumi Mikami; Kentaro Semba
Biomolecular concepts, Volume:4, Number:6, First page:567, Last page:82, Dec. 2013, [International magazine]
Gene amplification was recognized as a physiological process during the development of Drosophila melanogaster. Intriguingly, mammalian cells use this mechanism to overexpress particular genes for survival under stress, such as during exposure to cytotoxic drugs. One well-known example is the amplification of the dihydrofolate reductase gene observed in methotrexate-resistant cells. Four models have been proposed for the generation of amplifications: extrareplication and recombination, the breakage-fusion-bridge cycle, double rolling-circle replication, and replication fork stalling and template switching. Gene amplification is a typical genetic alteration in cancer, and historically many oncogenes have been identified in the amplified regions. In this regard, novel cancer-associated genes may remain to be identified in the amplified regions. Recent comprehensive approaches have further revealed that co-amplified genes also contribute to tumorigenesis in concert with known oncogenes in the same amplicons. Considering that cancer develops through the alteration of multiple genes, gene amplification is an effective acceleration machinery to promote tumorigenesis. Identification of cancer-associated genes could provide novel and effective therapeutic targets.
English, Scientific journal
DOI:https://doi.org/10.1515/bmc-2013-0026
DOI ID:10.1515/bmc-2013-0026, PubMed ID:25436757
- ハエトリソウの捕虫葉の形態形成におけるAS2 遺伝子の役割
浅川裕紀; 須田啓; 瀬上紹嗣; 長谷部光泰; 豊田正嗣
Mar. 2025
Mar. 2025 - Mar. 2025, English, Oral presentation - 食虫植物モウセンゴケ触毛の活動電位とカルシウム波の電気生理学的解析
瀬上紹嗣; Peng Chen; 松田陸玖; 杉本渚; 大井祥子; 須田啓; 佐藤良勝; 豊田正嗣; 長谷部光泰
Mar. 2025
Mar. 2025 - Mar. 2025, English, Oral presentation - 長距離カルシウムシグナルの三次元解析技術の開発
須田啓; 萩原拓真; 浅川裕紀; 豊田正嗣
Mar. 2025
Mar. 2025 - Mar. 2025, English, Oral presentation - 水生食虫植物ムジナモ冬芽由来の培養組織とシュート形成
今泉 優輝; 柳川 初; 須田 啓; 豊田 正嗣; 金子 康子
Sep. 2024
Sep. 2024 - Sep. 2024, Japanese, Poster presentation - 食虫植物モウセンゴケの触毛を伝わる活動電位とカルシウム波の解析
瀬上 紹嗣; Peng Chen; 松田 陸玖; 杉本 渚; 大井祥子; 須田 啓; 佐藤 良勝; 豊田 正嗣; 長谷部 光泰
Sep. 2024
Sep. 2024 - Sep. 2024, Japanese, Oral presentation - 形質転換ハエトリソウを用いた接触刺激受容における分子機構の解析
須田 啓; 浅川 裕紀; 大井祥子; 瀬上 紹嗣; 長谷部光泰; 豊田 正嗣
Sep. 2024
Sep. 2024 - Sep. 2024, Japanese, Oral presentation - Modeling and numerical analysis of the leaf-closing motion in Mimosa pudica
Hayato Oguni; Ryutaro Yoshii; Shunsuke Kobayashi; Takuma Hagihara; Hiraku Suda; Masatsugu Toyota; Ryuichi Tarumi
May 2024
May 2024 - May 2024, English, Poster presentation - Calcium wave dynamics in trapping hairs of carnivorous sundew Drosera rotundifolia
Shoji Segami; Peng Chen; Maki Kondo; Shoko Ohi; Hiraku Suda; Masatsugu Toyota; Mitsuyasu Hasebe
The 65th Annual Meeting of the Japanese Society of Plant Physiologists, Mar. 2024
Oral presentation - Mechanism of touch-induced electrical signaling in Dionaea muscipula
Hiroki Asakawa; Hiraku Suda; Shoko Ohi; Shoji Segami; Mitsuyasu Hasebe; Masatsugu Toyota
The 65th Annual Meeting of the Japanese Society of Plant Physiologists, Mar. 2024
Oral presentation - Elucidation of mechanical mechanism of Venus flytrap based on membrane mechanical model
Satoru TSUGAWA; Souta UEMURA; Hiroki ASAKAWA; Hiraku SUDA; Masatsugu Toyota; Yukitaka ISHIMOTO
Sep. 2023
Oral presentation - カルシウムシグナルと活動電位の同時測定 によるハエトリソウの接触刺激受容細胞の 解析
須田 啓; 浅川 裕紀; 長谷部 光泰; 豊田 正嗣
Sep. 2023
Japanese, Oral presentation - Calcium ion-mediated sensory and movement system in the Venus Flytrap
Hiraku Suda
The 2151st NIG Biological Symposium, Aug. 2023, [Invited]
English, Public discourse - Calcium ion-mediated memory and movement system in the Venus flytrap (Dionaea muscipula)
Hiraku Suda
Fifth webinar of the IRN France-Japan Frontiers in Plant Biology: «Emerging models in plant sciences», Oct. 2022, [Invited]
English, Invited oral presentation - 食虫植物モウセンゴケにおける高速カルシウムシ グナル伝達
瀬上 紹嗣; Palfalvi Gergo; 棚瀬 邦明; 下村 拓史; 陳 鵬; 松田 陸玖; 須田 啓; 張 列弛; 大井 祥子; 真野 弘明; 重信 秀次; 豊田 正嗣; 長谷部 光泰
Sep. 2022
Sep. 2022 - Sep. 2022, Japanese, Oral presentation - 食虫植物モウセンゴケの 形質転換法の開発
棚瀬 邦明; 須田 啓; 大井 祥子; 松林 克嘉; 長谷部 光泰; 瀬上 紹嗣
Sep. 2022
Sep. 2022 - Sep. 2022, Japanese, Poster presentation - Construction of a new transformation method in a non-model plant Venus flytrap (Dionaea muscipula)
Hiraku Suda
Sep. 2022, [Invited]
Sep. 2022 - Sep. 2022, Japanese, Nominated symposium - ハエトリソウの高速運動を司るセンサーとアクチュエータ
須田 啓; 浅川 裕紀; 津川 暁; 豊田 正嗣
Mar. 2022, [Invited]
Japanese, Invited oral presentation - 触れられたことを”感知”して虫を捕らえる植物ハエトリソウ
須田 啓
Aug. 2021, [Invited]
Japanese, Public discourse - カルシウムイオン動態のライブイメージングによるハエトリソウの記憶機構の解析
須田 啓
Oct. 2020, [Invited]
Japanese, Nominated symposium - カルシウムイオンを介したハエトリソウの記憶機構
須田 啓
Sep. 2020, [Invited]
Japanese, Nominated symposium - Calcium ion mediated memory system in the carnivorous plant Dionaea muscipula.
須田啓; 長谷部光泰
Mar. 2020, [Invited]
English, Nominated symposium - ハエトリソウとコモウセンゴケの形質転換技術およびハエトリソウのカルシウムイメージング
須田 啓
Sep. 2018, [Invited]
Japanese, Nominated symposium - Real-time cytosolic calcium imaging to elucidate the molecular mechanism of memory system in the Venus flytrap
Hiraku Suda; Kenji Fukushima; Hiroaki Mano; Masatsugu Toyota; Yosuke Tamada; Mitsuyasu Hasebe
Aug. 2018
English, Poster presentation - ハエトリソウとコモウセンゴケの形質転換技術の確立とカルシウムイメージング
須田 啓
May 2018, [Invited]
Japanese - ハエトリグサとコモウセンゴケにおける形質転換技術の確立
須田 啓; 上田 千晴; 真野 弘明; 豊田 正嗣; 玉田 洋介; 長谷部 光泰
Sep. 2017
Japanese, Oral presentation
- ハエトリソウを用いた運動力を発生させる分子機構の解明
Apr. 2022 - Mar. 2025
Grant amount(Total):5200000, Direct funding:4000000, Indirect funding:1200000
Grant number:22J00902 - ハエトリソウを用いた植物の高速なカルシウムシグナル伝達機構の解明
01 Apr. 2021 - 31 Mar. 2023
Grant amount(Total):4550000, Direct funding:3500000, Indirect funding:1050000
Grant number:21K15047 - ハエトリソウの記憶機構の解明
Apr. 2017 - Mar. 2019
Grant amount(Total):1900000, Direct funding:1900000
Grant number:17J08569