岸本 崇(キシモト タカシ)
理工学研究科 数理電子情報部門教授
理学部 数学科

研究者情報

■ 学位
  • 博士(理学), 大阪大学
■ 研究キーワード
  • サルキソフプログラム
  • ログ極小モデルプログラム
  • 多項式環
  • 代数幾何学
■ 学歴
  • 2002年, 大阪大学, 理学研究科, 数学, 日本国
  • 2002年, 大阪大学
  • 1997年, 東京工業大学, 理学部, 数学科, 日本国
  • 1997年, 東京工業大学

業績情報

■ MISC
  • A new proof of the non-tameness of the Nagata automorphism from the point of view of the Sarkisov program               
    Takashi Kishimoto
    巻:144, 号:4, 開始ページ:963, 終了ページ:977, 2008年07月
    The Nagata automorphism is a kind of complicated automorphism on the affine 3-space C(3). For a long time, it remained unknown whether or not the Nagata automorphism is tame until Shestakov and Umirbaev at last proved that it is not tame in 2004. by purely algebraic methods (e.g. Poisson algebra). In this paper, we consider a certain necessary condition for a given automorphism on C(3) to be tame from the point of view of the Sarkisov program established by Corti. Furthermore, by using it, we shall give a new algebro-geometric proof of the non-tameness of the Nagata automorphism.
    英語
    DOI:https://doi.org/10.1112/S0010437X07003399
    DOI ID:10.1112/S0010437X07003399, ISSN:0010-437X, Web of Science ID:WOS:000259119200008
  • A new proof of the non-tameness of the Nagata automorphism from the point of view of the Sarkisov program               
    Takashi Kishimoto
    巻:144, 号:4, 開始ページ:963, 終了ページ:977, 2008年07月
    The Nagata automorphism is a kind of complicated automorphism on the affine 3-space C 3. For a long time, it remained unknown whether or not the Nagata automorphism is tame until Shestakov and Umirbaev at last proved that it is not tame in 2004, by purely algebraic methods (e.g.Poisson algebra). In this paper, we consider a certain necessary condition for a given automorphism on C3 to be tame from the point of view of the Sarkisov program established by Corti. Furthermore, by using it, we shall give a new algebro-geometric proof of the non-tameness of the Nagata automorphism. © 2008 Copyright Foundation Compositio Mathematica 2008.
    英語
    DOI:https://doi.org/10.1112/S0010437X07003399
    DOI ID:10.1112/S0010437X07003399, ISSN:0010-437X, SCOPUS ID:47749137363
  • Affine lines on Q-homology planes with logarithmic kodaira dimension -infinity (vol 13, pg 1, 2008)               
    Takashi Kishimoto; Hideo Kojima
    巻:13, 号:1, 開始ページ:211, 終了ページ:213, 2008年03月
    英語, その他
    DOI:https://doi.org/10.1007/s00031-008-9007-z
    DOI ID:10.1007/s00031-008-9007-z, ISSN:1083-4362, Web of Science ID:WOS:000257394300009
  • Affine lines on Q-homology planes with logarithmic kodaira dimension -infinity               
    Takashi Kishimoto; Hideo Kojima
    Transformation Groups, 巻:13, 号:1, 開始ページ:211, 終了ページ:213, 2008年
    DOI:https://doi.org/10.1007/s00031-008-9007-z
    DOI ID:10.1007/s00031-008-9007-z
  • ログ極小モデル理論の観点からの3次元アフィン代数多様体の双正則的構造解析               
    岸本崇
    総合研究機構研究プロジェクト研究成果報告書, 巻:5 (平成18年度), 開始ページ:486, 終了ページ:487, 2007年
  • Affine threefolds whose log canonical bundles are not numerically effective               
    Takashi Kishimoto
    巻:208, 号:1, 開始ページ:189, 終了ページ:204, 2007年01月
    Let X hooked right arrow (T, D) be a compactification of an affine 3-fold X into a smooth projective 3-fold T such that the (reduced) boundary divisor D is SNC. In this paper, as an affine counterpart to the work due to S. Mori (cf. [S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982) 133-176]), we shall classify (K + D)-negative extremal rays on T. In particular, if such an extremal ray R = R+[C] intersects K non-negatively, we shall describe the log flips and divisorial contractions appearing explicitly. (c) 2005 Elsevier B.V. All rights reserved.
    英語
    DOI:https://doi.org/10.1016/j.jpaa.2005.12.007
    DOI ID:10.1016/j.jpaa.2005.12.007, ISSN:0022-4049, Web of Science ID:WOS:000242650900017
  • ログ極小モデル理論の観点からの3次元アフィン代数多様体の双正則的構造解析               
    岸本崇
    巻:5 (平成18年度), 開始ページ:486, 終了ページ:487, 2007年
  • Affine threefolds whose log canonical bundles are not numerically effective               
    Takashi Kishimoto
    巻:208, 号:1, 開始ページ:189, 終了ページ:204, 2007年01月
    Let X {right arrow, hooked} (T, D) be a compactification of an affine 3-fold X into a smooth projective 3-fold T such that the (reduced) boundary divisor D is SNC. In this paper, as an affine counterpart to the work due to S. Mori (cf. [S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982) 133-176]), we shall classify (K + D)-negative extremal rays on T. In particular, if such an extremal ray R = R+ [C] intersects K non-negatively, we shall describe the log flips and divisorial contractions appearing explicitly. © 2005 Elsevier Ltd. All rights reserved.
    英語
    DOI:https://doi.org/10.1016/j.jpaa.2005.12.007
    DOI ID:10.1016/j.jpaa.2005.12.007, ISSN:0022-4049, SCOPUS ID:33750433579
  • The combination of 3-dimensional Affine Algebraic Geometry and Minimal Model Program               
    岸本崇
    総合研究機構研究プロジェクト研究成果報告書, 巻:4 (平成17年度), 2006年
  • On the logarithmic kodaira dimension of affine threefolds               
    Takashi Kishimoto
    巻:17, 号:1, 開始ページ:1, 終了ページ:17, 2006年01月
    In this article, we shall consider how to analyze affine threefolds associated to the log Kodaira dimension K and make the framework for this purpose under a certain geometric condition. As a consequence of our main result, under this geometric condition, we can describe the construction of affine threefolds with κ̄ = ∞- fairly explicitly, and show that affine threefolds with κ̄ = 2 have the structure of ℂ*-fibrations. © World Scientific Publishing Company.
    英語
    DOI:https://doi.org/10.1142/S0129167X06003382
    DOI ID:10.1142/S0129167X06003382, ISSN:0129-167X, SCOPUS ID:32644438679
  • The combination of 3-dimensional Affine Algebraic Geometry and Minimal Model Program               
    岸本崇
    巻:4 (平成17年度), 2006年
  • Affine lines on Q-homology planes with logarithmic Kodaira dimension-infinity               
    Takashi Kishimoto; Hideo Kojima
    巻:11, 号:4, 開始ページ:659, 終了ページ:672, 2006年
    In the present paper, we study a topologically contractible irreducible algebraic curve C on a Q-homology plane S with kappa(S) = -infinity. We determine such a pair (S, C) when kappa(S\C) >= 0 and C is smooth. Moreover, we prove that if C is not smooth, then C has exactly one singular point and the Makar-Limanov invariant of S is trivial.
    英語
    DOI:https://doi.org/10.1007/s00031-005-1121-6
    DOI ID:10.1007/s00031-005-1121-6, ISSN:1083-4362, Web of Science ID:WOS:000242724000005
  • On the logarithmic Kodaira dimension of affine threefolds               
    Kishimoto, Takashi
    巻:17, 号:1, 開始ページ:1, 終了ページ:17, 2006年
    DOI:https://doi.org/10.1142/S0129167X06003382
    DOI ID:10.1142/S0129167X06003382
  • Compactifications of contractible affine 3-folds into smooth Fano 3-folds with B 2=2               
    Takashi Kishimoto
    巻:251, 号:4, 開始ページ:783, 終了ページ:820, 2005年12月
    After the contributions of Furushima, Nakayama, Peternell and Schneider, in 1993, Furushima [Fur93] finally succeeded in the classification of the compactifications of the affine 3-space [InlineMediaObject not available: see fulltext.] into smooth Fano 3-folds with B 2=1. In this paper, we consider the compactifications of the contractible affine 3-folds X (not necessarily X=[InlineMediaObject not available: see fulltext.]) into smooth Fano 3-folds V with B 2=2. Consequently, we classify all such compactifications X →(V,D 1⊃D 2) in the case where K V +D 1+D 2 is not nef. Furthermore, we see that infinitely many mutually non-isomorphic exotic [InlineMediaObject not available: see fulltext.]'s can be compactified into Fano 3-folds with B 2=2. This phenomenon never occurs when B 2=1. © Springer-Verlag 2005.
    英語
    DOI:https://doi.org/10.1007/s00209-005-0831-8
    DOI ID:10.1007/s00209-005-0831-8, ISSN:0025-5874, SCOPUS ID:27844499265
  • Compactifications of contractible affine 3-folds into smooth Fano 3-folds with B-2=2               
    T Kishimoto
    巻:251, 号:4, 開始ページ:783, 終了ページ:820, 2005年12月
    After the contributions of Furushima, Nakayama, Peternell and Schneider, in 1993, Furushima [Fur93] finally succeeded in the classification of the compactifications of the affine 3-space A(3) into smooth Fano 3-folds with B-2 = 1. In this paper, we consider the compactifications of the contractible affine 3-folds X (not necessarily X = A(3)) into smooth Fano 3-folds V with B-2 = 2. Consequently, we classify all such compactifications X --> (V, D-1 boolean OR D-2) in the case where K-V + D-1+ D-2 is not nef. Furthermore, we see that infinitely many mutually non-isomorphic exotic A(3)' s can be compactified into Fano 3-folds with B-2 = 2. This phenomenon never occurs when B-2 = 1.
    英語
    DOI:https://doi.org/10.1007/s00209-005-0831-8
    DOI ID:10.1007/s00209-005-0831-8, ISSN:0025-5874, Web of Science ID:WOS:000233043900004
  • Analysis of the structure of affine algebraic threefolds from a point of view of MinimalModel Theory (Mori Theory)               
    岸本崇
    総合研究機構研究プロジェクト研究成果報告書, 巻:3 (平成16年度), 2005年
  • The explicit factorization of the Cremona transformation which is an extension of the Nagata automorphism into elementary links               
    Takashi Kishimoto
    巻:278, 号:7-8, 開始ページ:833, 終了ページ:843, 2005年
    We consider the Cremona transformation Φσ: ℙ3⋯ → ℙ3which is an extension of the famous Nagata automorphism σ on the affine 3-space double-struck A sign3. In this paper we shall factorize this Cremona transformation Φσ explicitly into 8 elementary links according to the Sarkisov Program. © 2005 WILEY-VCH Verlag GmbH &
    Co. KGaA, Weinheim.
    英語
    DOI:https://doi.org/10.1002/mana.200310276
    DOI ID:10.1002/mana.200310276, ISSN:0025-584X, SCOPUS ID:20444426541
  • Singularities on normal affine 3-folds containing A(1)-cylinderlike open subsets               
    T Kishimoto
    巻:369, 開始ページ:139, 終了ページ:163, 2005年
    The normal affine varieties with A(1)-cylinderlike open subsets play important roles and of interest in itself in affine algebraic geometry. In [Miy81], Miyanishi described the construction of normal affine surfaces Y with A(1)-cylinderlike open subsets, explicitly. According to this explicit construction, he also has shown that such surfaces Y have at most cyclic quotient singularities. In this article, we consider the 3-dimensional generalization of the Miyanishi's result. Namely, we shall investigate how to construct normal affine 3-folds X containing A(1)-cylinderlike open subsets and the possibility of singularities on such X under a certain geometric assumption concerning the compactifications.
    英語
    ISSN:0271-4132, Web of Science ID:WOS:000227464800009
  • Analysis of the structure of affine algebraic threefolds from a point of view of MinimalModel Theory (Mori Theory)               
    岸本崇
    巻:3 (平成16年度), 2005年
  • The explicit factorization of the Cremona transformation which is an extension of the Nagata automorphism into elementary links               
    T Kishimoto
    巻:278, 号:7-8, 開始ページ:833, 終了ページ:843, 2005年
    We consider the Cremona transformation Phi(sigma) : P-3... -> P-3 which is an extension of the famous Nagata automorphism sigma on the affine 3-space A(3). In this paper we shall factorize this Cremona transformation Phi(sigma) explicitly into 8 elementary links according to the Sarkisov Program. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    英語
    DOI:https://doi.org/10.1002/mana.200310276
    DOI ID:10.1002/mana.200310276, ISSN:0025-584X, Web of Science ID:WOS:000229699100008
  • Singularities on normal affine 3-folds containing A1-cylinderlike open subsets               
    Kishimoto, Takashi
    巻:369, 開始ページ:139, 終了ページ:163, 2005年
  • On the compactifications of contractible affine threefolds and the Zariski Cancellation Problem               
    Takashi Kishimoto
    巻:247, 号:1, 開始ページ:149, 終了ページ:181, 2004年05月
    In this article, we consider the compactifications of some kinds of contractible smooth affine threefolds and the characterization of the affine 3-space double-struck A sign3 keeping the 3-dimensional Zariski Cancellation Problem in mind. We classify the compactifications of contractible smooth affine threefolds with a certain condition concerning the numerical property of boundary divisors with respect to compactifications and, then, we show that if an affine threefold X satisfies X × double-struck A sign 1 ≅ double-struck A sign4 and this numerical condition, then X is isomorphic to the affine 3-space double-struck A sign 3.
    英語
    DOI:https://doi.org/10.1007/s00209-003-0635-7
    DOI ID:10.1007/s00209-003-0635-7, ISSN:0025-5874, SCOPUS ID:2442590830
  • On the compactifications of contractible affine threefolds and the Zariski Cancellation Problem               
    T Kishimoto
    巻:247, 号:1, 開始ページ:149, 終了ページ:181, 2004年05月
    In this article, we consider the compactifications of some kinds of contractible smooth affine threefolds and the characterization of the affine 3-space A(3) keeping the 3-dimensional Zariski Cancellation Problem in mind. We classify the compactifications of contractible smooth affine threefolds with a certain condition concerning the numerical property of boundary divisors with respect to compactifications and, then, we show that if an affine threefold X satisfies X x A(1) congruent to A(4) and this numerical condition, then X is isomorphic to the affine 3-space A(3).
    英語
    DOI:https://doi.org/10.1007/s00209-003-0635-7
    DOI ID:10.1007/s00209-003-0635-7, ISSN:0025-5874, Web of Science ID:WOS:000220713800007
  • Abhyankar-Sathaye Embedding Problem in dimension three               
    Kishimoto, Takashi
    Journal of Mathematics of Kyoto University, 巻:42, 開始ページ:641, 終了ページ:669, 2002年
  • A new proof of a theorem of Ramanujam-Morrow               
    Kishimoto, Takashi
    Journal of Mathematics of Kyoto University, 巻:42, 開始ページ:117, 終了ページ:139, 2002年
  • Abhyankar-Sathaye Embedding Problem in dimension three               
    Kishimoto, Takashi
    巻:42, 開始ページ:641, 終了ページ:669, 2002年
  • A new proof of a theorem of Ramanujam-Morrow               
    Takashi Kishimoto
    巻:42, 号:1, 開始ページ:117, 終了ページ:139, 2002年
    Morrow classified all weighted dual graphs of the boundary of the minimal normal compactifications of the affine plane A2 by using a result of Ramanujam that any minimal normal compactification of A2 has a linear chain as the graph of the boundary divisor. In this article, we give a new proof of the above-mentioned results of Ramanujam-Morrow from a different point of view and by the purely algebro-geometric arguments. Moreover, we show that the affine plane A2 is characterized by the weighted dual graph of the boundary divisor.
    英語
    DOI:https://doi.org/10.1215/kjm/1250284714
    DOI ID:10.1215/kjm/1250284714, ISSN:0023-608X, SCOPUS ID:0036520891
  • Projective plane curves whose complements have logarithmic Kodaira dimension one               
    Takashi Kishimoto
    巻:27, 号:2, 開始ページ:275, 終了ページ:310, 2001年
    英語
    DOI:https://doi.org/10.4099/math1924.27.275
    DOI ID:10.4099/math1924.27.275, ISSN:0289-2316, SCOPUS ID:33847645456
  • Projective plane curves whose complements have logarithmic Kodaira dimension one               
    Kishimoto, Takashi
    巻:27, 開始ページ:275, 終了ページ:310, 2001年
■ 共同研究・競争的資金等の研究課題
  • ログ極小モデルプログラムの視点からの3次元アフィン代数多様体の構造解析               
    現在の研究テーマは,双有理幾何学的手法(極小モデル理論・森理論)を用いた高次元アフィン代数多様体の構造研究である。特に関心があるのは,3次元の場合であるが,多くのアフィン代数幾何学・多項式環に関する問題は,3次元以上では殆ど解明されていないと言ってよい。一方,3次元の射影多様体に対しては,極小モデル理論という代数多様体の大まかな特徴(双有理的な特徴)を把握する為には大変に強力な理論が存在する。大雑把に言うと,解析したい3次元アフィン代数多様体$X$を3次元射影多様体$V$に境界因子$D$が正規交叉するようにコンパクト化をしておき,dlt対$(V,D)$からスタートするログ極小モデルプログラム(LMMP)を実行する。ログ極小モデル理論の枠組みにより,有限回の双有理写像(因子収縮射,ログ・フリップ)を経由した後に,対(V,D)$は新しいdlt対$(V',D')$に双有理的に変化し,$X$の対数的小平次元に応じて$(V',D')$はログ森ファイバー空間又はログ極小モデルになる。この$(V',D')$の特殊な構造を利用し,補集合$X'=V'-D'$を解析することは可能であるので,最終的に問題となってくるのは$X$と$X'$の変化を明示的に記述することである。ここの問題が解決できれば,1970年代後半からの2次元アフィン代数多様体(アフィン曲面)の理論の著しい発展と同様な発展が3次元アフィン代数多様体にも期待できる。現地点では,我々のこの試みは完全な形では実現されてはいないが,コンパクト化に関するある種の幾何学的な条件を課した上では試みは成功している(Math. Zeit., 247 (2004), 149-181, International. J. Math., 17 (2006), 1-17)。現在でも仮定する条件は段階的に少しずつ改良できてきている。また,3次元アフィン代数幾何学で中心的な多様体となるのは,3次元アフィン空間$C3$であるが,それを上で述べた視点で考察する為には$C3$の森ファイバー空間へのコンパクト化を分類することが望ましい。第二ベッチ数が1の非特異なFano 3-foldの場合には,様々な研究者の貢献の後に1993年に古島幹雄氏によりコンパクト化は分類された。我々は第二ベッチ数が2の非特異なFano 3-foldの場合に,森重文氏・向井茂氏による非特異Fano 3-foldの分類を適用することにより,$C^3$のみではなくて位相的に可縮な3次元アフィン代数多様体のコンパクト化を分類することに成功した(Math. Zeit., 251 (2005), 783-820)。
    競争的資金
  • -               
    競争的資金
TOP