津田 佐知子(ツダ サチコ)
理工学研究科 生命科学部門准教授
理学部 生体制御学科

研究者情報

■ 学位
  • 博士(理学), 東京大学
■ 研究キーワード
  • カルシウムイメージング
  • 膜電位イメージング
  • 生理学
  • 神経発生
  • 光技術
  • 小脳神経回路
  • ゼブラフィッシュ
  • 集団行動
■ 研究分野
  • ライフサイエンス, 発生生物学
  • ライフサイエンス, 解剖学
  • ライフサイエンス, 動物生理化学、生理学、行動学
■ 経歴
  • 2019年04月 - 現在, 埼玉大学大学院理工学研究科生命科学部門, 准教授
  • 2014年04月 - 2019年03月, 埼玉大学研究機構 研究企画推進室, 助教(テニュアトラック)
  • 2017年04月 - 2018年03月, 東京大学大学院理学系研究科生物科学専攻, 客員研究員
  • 2014年04月 - 2014年04月, 埼玉大学大学院 理工学研究科生命科学部門, 助教
  • 2013年10月 - 2014年03月, Lee Kong Chian School of Medicine, Neuroscience and Mental Health, Research Fellow
  • 2009年11月 - 2013年09月, Duke-NUS Graduate Medical School Sinagpore, Programs in Neuroscience and Behavioral Disorders, Research Fellow
  • 2012年05月 - 2012年08月, ウッズホール海洋生物学研究所, Grass Fellow, Whitman investigator
  • 2011年05月 - 2011年09月, ウッズホール海洋生物学研究所, Visiting scientist
  • 2010年05月 - 2010年08月, ウッズホール海洋生物学研究所, Visiting scientist
  • 2009年04月 - 2009年10月, 東京大学大学院理学系研究科生物科学専攻, 特任研究員
  • 2007年04月 - 2009年03月, 日本学術振興会, 特別研究員(DC2)
■ 学歴
  • 2013年07月 - 2013年08月, ウッズホール海洋生物学研究所 Methods in Computational Neuroscience Course
  • 2006年04月 - 2009年03月, 東京大学大学院理学系研究科 生物科学専攻動物学大講座 博士課程
  • 2004年04月 - 2006年03月, 東京大学大学院理学系研究科 生物科学専攻動物学大講座 修士課程
  • 2000年04月 - 2004年03月, 東京大学理学部 生物学科動物学課程
■ 委員歴
  • 2025年01月 - 現在
    第31回小型魚類研究会, 世話人
  • 2024年07月 - 現在
    Frontiers in Neuroscience, Research topic "Optical interrogation of the nervous system: recent advances in optical techniques and their applications", Co-editor
  • 2023年05月 - 現在
    日本神経科学学会, ホームページ委員会委員
  • 2023年04月 - 現在
    第47回, 48回日本神経科学大会(NEURO2024, NEURO2025), プログラム委員, 学協会
  • 2022年12月 - 現在
    Frontiers in Genetics, Review Editor on the Editorial Board of Neurogenomics
  • 2022年11月 - 現在
    Development, Growth & Differentiation, Special Issue: "Understanding disorders of the human nervous system: how fish models reveal disease mechanisms from single molecules to behavior", Guest editor
  • 2021年08月 - 現在
    さいたま市環境影響評価技術審議会委員
  • 2021年03月 - 現在
    日本小脳学会, 理事・運営委員, 学協会
  • 2020年05月 - 現在
    日本発生生物学会, 編集委員 Development, Growth & Differentiation
  • 2017年04月 - 現在
    National Bio-resource Project (NBRP) ゼブラフィッシュ, 運営委員, 政府
  • 2023年11月 - 2024年08月
    18th International Zebrafish Conference, Organizing Committee, 学協会
  • 2022年08月 - 2023年09月
    第29回日本小型魚類研究会, 実行委員
  • 2022年03月 - 2022年08月
    Merocyanine 540 and FlaSh Celebration, Co-organizer
  • 2020年 - 2021年
    日本神経科学会, プログラム委員, 学協会
  • 2018年08月 - 2020年11月
    小型魚類研究会, Organizer, 学協会
■ 受賞
  • 2022年11月, 埼玉大学学長特別賞(みずき賞)
    津田佐知子
  • 2018年, Narishige Zoological Science Award(成茂動物科学振興基金)
    津田 佐知子
  • 2017年, Welcome Trust Travel Award (18th International Congress of Developmental Biology)
    津田 佐知子
  • 2012年, Grass Fellowship
    津田 佐知子

業績情報

■ 論文
  • Understanding disorders of the human nervous system: How fish models reveal disease mechanisms from single molecules to behavior (part 2).               
    Christina Lillesaar; William Norton; Daniel Liedtke; Sachiko Tsuda
    Development, growth & differentiation, 巻:67, 号:1, 開始ページ:4, 終了ページ:5, 2025年01月, [国内誌]
    The usefulness of zebrafish for understanding the human nervous system is exemplified by the articles in part 1. The virtual special issue part 2 not only covers more work using this well-established species, but also highlights that other fish species may serve as alternative or more appropriate models, due to unique biological or evolutionary characteristics, to explore genetic and molecular mechanisms of neurological and psychiatric disorders.
    英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1111/dgd.12951
    DOI ID:10.1111/dgd.12951, PubMed ID:39854022
  • GPR139 agonist and antagonist differentially regulate retrieval and consolidation of fear memory in the zebrafish.               
    Nisa Roy; Satoshi Ogawa; Sachiko Tsuda; Ishwar S Parhar
    Frontiers in neuroscience, 巻:18, 開始ページ:1461148, 終了ページ:1461148, 2024年, [査読有り], [国際誌]
    G protein-coupled receptor 139 (GPR139), a highly conserved orphan receptor, is predominantly expressed in the habenula of vertebrate species. Habenula is an ancient epithalamic structure, which is critical to comprehending adaptive behaviors in vertebrates. We have previously demonstrated the role of GPR139 agonists in fear-associated decision-making processes in zebrafish. However, how GPR139 signaling in the habenula modulates such adaptive behavioral responses remains unsolved. Fish centrally administered with a synthetic antagonist for human GPR139 (NCRW0005-F05) exhibited significant suppression of odorant cue (alarm substance, AS)-induced fear learning in the conditioned place avoidance paradigm. On the other hand, co-treatment with a GPR139 antagonist and a synthetic agonist for human GPR139 (JNJ-63533054) interrupted the fear conditioning process by significantly reducing locomotion during post-conditioning. Calcium imaging of acute brain slices showed a significant increase in peak amplitude of calcium transients in the habenula upon bath application of either a GPR139 antagonist or agonist. Furthermore, KCl-evoked calcium transients were reduced by the GPR139 antagonist and co-treatment of the GPR139 antagonist-agonist. These results suggest that the GPR139 antagonist did not block the inhibitory action of the GPR139 agonist in the decision-making process during the fear-retrieval phase; however, solitarily, it functions in governing the fear consolidation process via activation of the ventral habenula neurons in zebrafish.
    英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.3389/fnins.2024.1461148
    DOI ID:10.3389/fnins.2024.1461148, PubMed ID:39717703, PubMed Central ID:PMC11665214
  • The effects of paroxetine-induced transient apoptosis and brain remodeling on social behavior in developing zebrafish
    Tomomi Sato; Kaito Saito; Tsubasa Oyu; Sachiko Tsuda; Tomohiro Kurisaki; Takeshi Kajihara; Masabumi Nagashima
    bioRxiv, 2023年11月
    Abstract

    Autism spectrum disorder (ASD) is a neurodevelopmental condition caused by various genetic and environmental factors. This disorder has the cardinal symptoms including impaired social behavior involving the amygdala. Antidepressants such as paroxetine in early pregnancy increase the risk of ASD in offspring. However, a comprehensive picture of the underlying pathogenic mechanisms remains elusive. Here, we demonstrate that early exposure of zebrafish embryos to paroxetine suppresses neurogenesis in the optic tectum and the dorsal telencephalon which corresponds to the human amygdala. Paroxetine-treated embryos exhibit impaired growth, with small heads and short body lengths resulting from transient apoptosis. This is reminiscent of the early-onset fetal growth restriction (FGR) associated with ASD. Interestingly, the suppressed neurogenesis in the small heads was found to be restored after the cessation of paroxetine. This was accompanied by extended retinotectal projections, suggesting brain-preferential remodeling. Finally, the paroxetine-treated fish exhibited impaired social behavior, further supporting the correspondence with ASD. Our findings offer new insights into the early neurodevelopmental etiology of ASD.
    Cold Spring Harbor Laboratory
    DOI:https://doi.org/10.1101/2023.11.10.566506
    DOI ID:10.1101/2023.11.10.566506
  • Understanding disorders of the human nervous system: How fish models reveal disease mechanisms from single molecules to behavior (part 1).               
    Christina Lillesaar; William Norton; Daniel Liedtke; Sachiko Tsuda
    Development, growth & differentiation, 巻:65, 号:8, 開始ページ:432, 終了ページ:433, 2023年10月, [国内誌]
    英語
    DOI:https://doi.org/10.1111/dgd.12894
    DOI ID:10.1111/dgd.12894, PubMed ID:37881022
  • In vivo long-term voltage imaging by genetically encoded voltage indicator reveals spatiotemporal dynamics of neuronal populations during development
    Asuka Shiraishi; Ayane Hayashi; Narumi Fukuda; Mari Hishinuma; Hiroaki Miyazawa; Sachiko Tsuda
    bioRxiv, 2023年05月, [最終著者, 責任著者]
    Abstract

    A central question in brain development lies in how individual neurons emerge and organize communities to acquire various functions. Voltage imaging provides unique approaches to addressing this by enabling simultaneous, non-invasive, in vivo recording of voltage dynamics from a population of cells. Recently, genetically encoded voltage indicators (GEVIs) facilitate cell-type specific imaging of voltage dynamics. However, it has not been applied to brain development. Here, we applied ArcLight, a GEVI utilizing voltage-sensitive domain, to zebrafish and established experimental approaches for analyzing voltage and morphology of neuron populations during development, focusing on the spinal cord and cerebellum. We initially demonstrated that Arclight was widely distributed in the neural tissues. With voltage imaging, we successfully visualized the coordinated, spontaneous activity of spinal cord neurons in their early stage of development at a high spatiotemporal resolution, at subcellular and population levels. Hyperpolarization and subthreshold signals were also detected. Finally, long-term voltage imaging during development revealed the process of changes in voltage dynamics in neuron populations, accompanied by axonal outgrowth. Voltage imaging could greatly contribute to our understanding of the functional organization of the nervous system during development.
    Cold Spring Harbor Laboratory
    DOI:https://doi.org/10.1101/2023.05.25.540669
    DOI ID:10.1101/2023.05.25.540669
  • In vivo wide-field voltage imaging in zebrafish with voltage-sensitive dye and genetically encoded voltage indicator.               
    Kanae Hiyoshi; Asuka Shiraishi; Narumi Fukuda; Sachiko Tsuda
    Development, growth & differentiation, 2021年08月, [査読有り], [最終著者, 責任著者], [国内誌]
    The brain consists of neural circuits, which are assemblies of various neuron types. For understanding how the brain works, it is essential to identify the functions of each type of neuron and neuronal circuits. Recent advances in our understanding of brain function and its development have been achieved using light to detect neuronal activity. Optical measurement of membrane potentials through voltage imaging is a desirable approach, enabling fast, direct, and simultaneous detection of membrane potentials in a population of neurons. Its high speed and directness can help detect synaptic and action potentials and hyperpolarization, which encode critical information for brain function. Here, we describe in vivo voltage imaging procedures that we have recently established using zebrafish, a powerful animal model in developmental biology and neuroscience. By applying two types of voltage sensors, voltage-sensitive dyes (VSDs, Di-4-ANEPPS) and genetically encoded voltage indicators (GEVIs, ASAP1), spatiotemporal dynamics of voltage signals can be detected in the whole cerebellum and spinal cord in awake fish at single-cell and neuronal population levels. Combining this method with other approaches, such as optogenetics, behavioral analysis, and electrophysiology would facilitate a deeper understanding of the network dynamics of the brain circuitry and its development.
    英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1111/dgd.12744
    DOI ID:10.1111/dgd.12744, PubMed ID:34411280
  • Two-Photon Laser Ablation and In Vivo Wide-Field Imaging of Inferior Olive Neurons Revealed the Recovery of Olivocerebellar Circuits in Zebrafish.               
    Kanae Hiyoshi; Kaito Saito; Narumi Fukuda; Takahisa Matsuzaki; Hiroshi Y Yoshikawa; Sachiko Tsuda
    International journal of environmental research and public health, 巻:18, 号:16, 2021年08月, [査読有り], [招待有り], [最終著者, 責任著者], [国際誌]
    The cerebellum, a brain region with a high degree of plasticity, is pivotal in motor control, learning, and cognition. The cerebellar reserve is the capacity of the cerebellum to respond and adapt to various disorders via resilience and reversibility. Although structural and functional recovery has been reported in mammals and has attracted attention regarding treatments for cerebellar dysfunction, such as spinocerebellar degeneration, the regulatory mechanisms of the cerebellar reserve are largely unidentified, particularly at the circuit level. Herein, we established an optical approach using zebrafish, an ideal vertebrate model in optical techniques, neuroscience, and developmental biology. By combining two-photon laser ablation of the inferior olive (IO) and long-term non-invasive imaging of "the whole brain" at a single-cell resolution, we succeeded in visualization of the morphological changes occurring in the IO neuron population and showed at a single-cell level that structural remodeling of the olivocerebellar circuit occurred in a relatively short period. This system, in combination with various functional analyses, represents a novel and powerful approach for uncovering the mechanisms of the cerebellar reserve, and highlights the potential of the zebrafish model to elucidate the organizing principles of neuronal circuits and their homeostasis in health and disease.
    英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.3390/ijerph18168357
    DOI ID:10.3390/ijerph18168357, PubMed ID:34444107, PubMed Central ID:PMC8391264
  • Involvement of Oct4-type transcription factor Pou5f3 in posterior spinal cord formation in zebrafish embryos.               
    Tatsuya Yuikawa; Masaaki Ikeda; Sachiko Tsuda; Shinji Saito; Kyo Yamasu
    Development, growth & differentiation, 巻:63, 号:6, 開始ページ:306, 終了ページ:322, 2021年08月, [査読有り], [国内誌]
    In vertebrate embryogenesis, elongation of the posterior body is driven by de novo production of the axial and paraxial mesoderm as well as the neural tube at the posterior end. This process is presumed to depend on the stem cell-like population in the tail bud region, but the details of the gene regulatory network involved are unknown. Previous studies suggested the involvement of pou5f3, an Oct4-type POU gene in zebrafish, in axial elongation. In the present study, we first found that pou5f3 is expressed mainly in the dorsal region of the tail bud immediately after gastrulation, and that this expression is restricted to the posterior-most region of the elongating neural tube during somitogenesis. This pou5f3 expression was complementary to the broad expression of sox3 in the neural tube, and formed a sharp boundary with specific expression of tbxta (orthologue of mammalian T/Brachyury) in the tail bud, implicating pou5f3 in the specification of tail bud-derived cells toward neural differentiation in the spinal cord. When pou5f3 was functionally impaired after gastrulation by induction of a dominant-interfering pou5f3 mutant gene (en-pou5f3), trunk and tail elongation were markedly disturbed at distinct positions along the axis depending on the stage. This finding showed involvement of pou5f3 in de novo generation of the body from the tail bud. Conditional functional abrogation also showed that pou5f3 downregulates mesoderm-forming genes but promotes neural development by activating neurogenesis genes around the tail bud. These results suggest that pou5f3 is involved in formation of the posterior spinal cord.
    英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1111/dgd.12742
    DOI ID:10.1111/dgd.12742, PubMed ID:34331767
  • A globin-family protein, Cytoglobin 1, is involved in the development of neural crest-derived tissues and organs in zebrafish.               
    Kazuki Takahashi; Yuki Ito; Mami Yoshimura; Masataka Nikaido; Tatsuya Yuikawa; Akinori Kawamura; Sachiko Tsuda; Daichi Kage; Kyo Yamasu
    Developmental biology, 巻:472, 開始ページ:1, 終了ページ:17, 2021年04月, [査読有り], [国際誌]
    The zebrafish is an excellent model animal that is amenable to forward genetics approaches. To uncover unknown developmental regulatory mechanisms in vertebrates, we conducted chemical mutagenesis screening and identified a novel mutation, kanazutsi (kzt). This mutation is recessive, and its homozygotes are embryonic lethal. Mutant embryos suffered from a variety of morphological defects, such as head flattening, pericardial edema, circulation defects, disrupted patterns of melanophore distribution, dwarf eyes, a defective jaw, and extensive apoptosis in the head, which indicates that the main affected tissues are derived from neural crest cells (NCCs). The expression of tissue-specific markers in kzt mutants showed that the early specification of NCCs was normal, but their later differentiation was severely affected. The mutation was mapped to chromosome 3 by linkage analyses, near cytoglobin 1 (cygb1), the product of which is a globin-family respiratory protein. cygb1 expression was activated during somitogenesis in somites and cranial NCCs in wild-type embryos but was significantly downregulated in mutant embryos, despite the normal primary structure of the gene product. The kzt mutation was phenocopied by cygb1 knockdown with low-dose morpholino oligos and was partially rescued by cygb1 overexpression. Both severe knockdown and null mutation of cygb1, established by the CRISPR/Cas9 technique, resulted in far more severe defects at early stages. Thus, it is highly likely that the downregulation of cygb1 is responsible for many, if not all, of the phenotypes of the kzt mutation. These results reveal a requirement for globin family proteins in vertebrate embryos, particularly in the differentiation and subsequent development of NCCs.
    英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1016/j.ydbio.2020.12.016
    DOI ID:10.1016/j.ydbio.2020.12.016, PubMed ID:33358912
  • Involvement of an Oct4-related PouV gene, pou5f3/pou2, in neurogenesis in the early neural plate of zebrafish embryos.               
    Inomata C; Yuikawa T; Nakayama-Sadakiyo Y; Kobayashi K; Ikeda M; Chiba M; Konishi C; Ishioka A; Tsuda S; Yamasu K
    Developmental Biology, 巻:457, 号:1, 開始ページ:30, 終了ページ:42, 2020年01月, [査読有り]
  • Horizontal Boundary Cells, a Special Group of Somitic Cells, Play Crucial Roles in the Formation of Dorsoventral Compartments in Teleost Somite               
    Kota Abe; Atsuko Shimada; Sayaka Tayama; Hotaka Nishikawa; Takuya Kaneko; Sachiko Tsuda; Akari Karaiwa; Takaaki Matsui; Tohru Ishitani; Hiroyuki Takeda
    Cell Reports, 巻:27, 号:3, 開始ページ:928, 終了ページ:939, 2019年04月, [査読有り]
    Abe et al. find horizontal boundary cells (HBCs) crucial players for the formation of the dorsoventral compartments of the teleost myotome. HBCs express Hhip, which is necessary for the refinement of the boundary, and they contribute to the horizontal myoseptum, an anatomical structure dividing the dorsoventral compartments.
    研究論文(学術雑誌)
    DOI:https://doi.org/10.1016/j.celrep.2019.03.068
    Scopus:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064182923&origin=inward
    Scopus Citedby:https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85064182923&origin=inward
    DOI ID:10.1016/j.celrep.2019.03.068, eISSN:2211-1247, PubMed ID:30995487, SCOPUS ID:85064182923
  • 4D imaging identifies dynamic migration and the fate of gbx2-expressing cells in the brain primordium of zebrafish.               
    Tsuda S; Hiyoshi K; Miyazawa H; Kinno R; Yamasu K; Corresponding Author
    Neuroscience letters, 巻:690, 開始ページ:112, 終了ページ:119, 2019年01月, [査読有り], [筆頭著者, 責任著者]
  • β-Oxidation in ghrelin-producing cells is important for ghrelin acyl-modification.               
    Ikenoya C; Takemi S; Kaminoda A; Aizawa S; Ojima S; Gong Z; Chacrabati R; Kondo D; Wada R; Tanaka T; Tsuda S; Sakai T; Sakata I
    Scientific reports, 巻:8, 号:1, 開始ページ:9176, 2018年12月, [査読有り]
    Ghrelin is a unique fatty acid-modified peptide hormone produced in the stomach and has important roles in energy homeostasis and gastrointestinal motility. However, the medium-chain fatty acid source for ghrelin acyl-modification is not known. We found that a fat-free diet and the removal of intestinal microbiota did not decrease acyl-ghrelin production in the stomach or plasma acyl-ghrelin levels in mice. RT-PCR analysis showed that genes involving fatty acid synthesis, metabolism, and transport were expressed in pancreas-derived ghrelinoma (PG-1) cells. Treatment with an irreversible inhibitor of carnitine palmitoyltransferase-1 (CPT-1) strongly decreased acylated ghrelin levels but did not affect ghrelin or ghrelin o-acyl transferase (GOAT) mRNA levels in PG-1 cells. Our results suggest that the medium-chain fatty acid used for the acyl-modification of ghrelin is produced in ghrelin-producing cells themselves by β-oxidation of long-chain fatty acids provided from the circulation.
    Nature Publishing Group, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1038/s41598-018-27458-2
    DOI ID:10.1038/s41598-018-27458-2, ISSN:2045-2322, PubMed ID:29907775, SCOPUS ID:85048721944
  • Optical measurement of neuronal activity in the developing cerebellum of zebrafish using voltage-sensitive dye imaging.               
    Okumura K; Kakinuma H; Amo R; Okamoto H; Yamasu K; Tsuda S
    Neuroreport, 巻:29, 号:16, 開始ページ:1349, 終了ページ:1354, 2018年11月, [査読有り], [最終著者, 責任著者], [国際誌]
    Voltage-sensitive dye (VSD) imaging enables fast, direct, and simultaneous detection of membrane potentials from a population of neurons forming neuronal circuits. This enables the detection of hyperpolarization together with depolarization, whose balance plays a pivotal role in the function of many brain regions. Among these is the cerebellum, which contains a significant number of inhibitory neurons. However, the mechanism underlying the functional development remains unclear. In this study, we used a model system ideal to study neurogenesis by applying VSD imaging to the cerebellum of zebrafish larvae to analyze the neuronal activity of the developing cerebellum, focusing on both excitation and inhibition. We performed in-vivo high-speed imaging of the entire cerebellum of the zebrafish, which was stained using Di-4-ANEPPS, a widely used VSD. To examine whether neuronal activity in the zebrafish cerebellum could be detected by this VSD, we applied electrical stimulation during VSD imaging, which showed that depolarization was detected widely in the cerebellum upon stimulation. These responses mostly disappeared following treatment with tetrodotoxin, indicating that Di-4-ANEPPS enabled optical measurement of neuronal activity in the developing cerebellum of zebrafish. Moreover, hyperpolarizing signals were also detected upon stimulation, but these were significantly reduced by treatment with picrotoxin, a GABAA receptor inhibitor, indicating that these responses represent inhibitory signals. This approach will enable a detailed analysis of the spatiotemporal dynamics of the excitation and inhibition in the cerebellum along its developmental stages, leading to a deeper understanding of the functional development of the cerebellum in vertebrates.
    英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1097/WNR.0000000000001113
    DOI ID:10.1097/WNR.0000000000001113, ISSN:0959-4965, PubMed ID:30192301
  • Optical interrogation of neuronal circuitry in zebrafish using genetically encoded voltage indicators               
    Hiroaki Miyazawa; Kanoko Okumura; Kanae Hiyoshi; Kazuhiro Maruyama; Hisaya Kakinuma; Ryunosuke Amo; Hitoshi Okamoto; Kyo Yamasu; Sachiko Tsuda
    Scientific Reports, 巻:8, 号:1, 開始ページ:6048, 終了ページ:6048, 2018年04月, [査読有り], [最終著者, 責任著者], [国際誌]
    Optical measurement of membrane potentials enables fast, direct and simultaneous detection of membrane potentials from a population of neurons, providing a desirable approach for functional analysis of neuronal circuits. Here, we applied recently developed genetically encoded voltage indicators, ASAP1 (Accelerated Sensor of Action Potentials 1) and QuasAr2 (Quality superior to Arch 2), to zebrafish, an ideal model system for studying neurogenesis. To achieve this, we established transgenic lines which express the voltage sensors, and showed that ASAP1 is expressed in zebrafish neurons. To examine whether neuronal activity could be detected by ASAP1, we performed whole-cerebellum imaging, showing that depolarization was detected widely in the cerebellum and optic tectum upon electrical stimulation. Spontaneous activity in the spinal cord was also detected by ASAP1 imaging at single-cell resolution as well as at the neuronal population level. These responses mostly disappeared following treatment with tetrodotoxin, indicating that ASAP1 enabled optical measurement of neuronal activity in the zebrafish brain. Combining this method with other approaches, such as optogenetics and behavioural analysis may facilitate a deeper understanding of the functional organization of brain circuitry and its development.
    英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1038/s41598-018-23906-1
    DOI ID:10.1038/s41598-018-23906-1, PubMed ID:29662090, PubMed Central ID:PMC5902623
  • Study of termination of postprandial gastric contractions in humans, dogs and Suncus murinus: role of motilin- and ghrelin-induced strong contraction               
    T. Mikami; K. Ito; H. O. Diaz-Tartera; P. M. Hellström; E. Mochiki; S. Takemi; T. Tanaka; S. Tsuda; T. Jogahara; I. Sakata; T. Sakai
    Acta Physiologica, 巻:222, 号:2, 2018年02月, [査読有り]
    Aim: Stomach contractions show two types of specific patterns in many species, that is migrating motor contraction (MMC) and postprandial contractions (PPCs), in the fasting and fed states respectively. We found gastric PPCs terminated with migrating strong contractions in humans, dogs and suncus. In this study, we reveal the detailed characteristics and physiological implications of these strong contractions of PPC. Methods: Human, suncus and canine gastric contractions were recorded with a motility-monitoring ingestible capsule and a strain-gauge force transducer. The response of motilin and ghrelin and its receptor antagonist on the contractions were studied by using free-moving suncus. Results: Strong gastric contractions were observed at the end of a PPC in human, dog and suncus models, and we tentatively designated this contraction to be a postprandial giant contraction (PPGC). In the suncus, the PPGC showed the same property as those of a phase III contraction of MMC (PIII-MMC) in the duration, motility index and response to motilin or ghrelin antagonist administration. Ghrelin antagonist administration in the latter half of the PPC (LH-PPC) attenuated gastric contraction prolonged the duration of occurrence of PPGC, as found in PII-MMC. Conclusion: It is thought that the first half of the PPC changed to PII-MMC and then terminated with PIII-MMC, suggesting that PPC consists of a digestive phase (the first half of the PPC) and a discharge phase (LH-PPC) and that LH-PPC is coincident with MMC. In this study, we propose a new approach for the understanding of postprandial contractions.
    Blackwell Publishing Ltd, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1111/apha.12933
    DOI ID:10.1111/apha.12933, ISSN:1748-1716, PubMed ID:28786555, SCOPUS ID:85029411372
  • The role of gastrulation brain homeobox 2 (gbx2) in the development of the ventral telencephalon in zebrafish embryos
    Zhe Wang; Yukiko Nakayama; Sachiko Tsuda; Kyo Yamasu
    Differentiation, 巻:99, 開始ページ:28, 終了ページ:40, 2018年01月, [査読有り]
    During vertebrate brain development, the gastrulation brain homeobox 2 gene (gbx2) is expressed in the forebrain, but its precise roles are still unknown. In this study, we addressed this issue in zebrafish (Danio rerio) first by carefully examining gbx2 expression in the developing forebrain. We showed that gbx2 was expressed in the telencephalon during late somitogenesis, from 18 h post-fertilization (hpf) to 24 hpf, and in the thalamic primordium after 26 hpf. In contrast, another gbx gene, gbx1, was expressed in the anterior-most ventral telencephalon after 36 hpf. Thus, the expression patterns of these two gbx genes did not overlap, arguing against their redundant function in the forebrain. Two-color fluorescence in situ hybridization (FISH) showed close relationships between the telencephalic expression of gbx2 and other forebrain-forming genes, suggesting that their interactions contribute to the regionalization of the telencephalon. FISH further revealed that gbx2 is expressed in the ventricular region of the telencephalon. By using transgenic fish in which gbx2 can be induced by heat shock, we found that gbx2 induction at 16 hpf repressed the expression of emx3, dlx2a, and six3b in the ventral telencephalon. Among secreted factor genes, bmp2b and wnt1 were repressed in the vicinity of the gbx2 domain in the telencephalon. The expression of forebrain-forming genes was examined in mutant embryos lacking gbx2, showing emx3 and dlx2a to be upregulated in the subpallium at 24 hpf. Taken together, these findings indicate that gbx2 contributes to the development of the subpallium through its repressive activities against other telencephalon-forming genes. We further showed that inhibiting FGF signaling and activating Wnt signaling repressed gbx2 and affected the regionalization of the telencephalon, supporting a functional link between gbx2, intracellular signaling, and telencephalon development.
    Elsevier Ltd, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1016/j.diff.2017.12.005
    DOI ID:10.1016/j.diff.2017.12.005, ISSN:1432-0436, SCOPUS ID:85039744685
  • Comprehensive analysis of target genes in zebrafish embryos reveals gbx2 involvement in neurogenesis               
    Yukiko Nakayama; Chihiro Inomata; Tatsuya Yuikawa; Sachiko Tsuda; Kyo Yamasu
    DEVELOPMENTAL BIOLOGY, 巻:430, 号:1, 開始ページ:237, 終了ページ:248, 2017年10月, [査読有り]
    It is well established that the gbx2 homeobox gene contributes to the positioning of the midbrain-hindbrain boundary (MHB) governing the development of adjacent brain regions in vertebrate embryos, but the specific aspects of the gene regulatory network regulated by gbx2 during brain development remain unclear. In the present study, we sought to comprehensively identify gbx2 target genes in zebrafish embryos by microarray analysis around the end of gastrulation, when the MHB is established, using transgenic embryos harboring heat-inducible gbx2. This analysis revealed that a large number of genes were either upregulated or downregulated following gbx2 induction, and the time course of induction differed depending on the genes. The differences in response to gbx2 were found by functional annotation analysis to be related to the functions and structures of the target genes. Among the significantly downregulated genes was her5, whose expression in the midbrain was precisely complementary to gbx2 expression around the MHB, suggesting that gbx2 expression in the anterior hindbrain restricts her5 expression to the midbrain. Because her5 represses neurogenesis, gbx2 may positively regulate neural development in its expression domain. Indeed, we showed further that gbx2 induction upregulated neural marker expression in the midbrain. Quantitative PCR analysis revealed that gbx2 upregulated the expression of the zebrafish proneural gene ebf2, whereas it repressed notchl a, which generally represses neurogenesis. Taken together, these results demonstrate that gbx2 not only functions to position the MHB but also regulates neurogenesis in the anterior hindbrain.
    ACADEMIC PRESS INC ELSEVIER SCIENCE, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1016/j.ydbio.2017.07.015
    DOI ID:10.1016/j.ydbio.2017.07.015, ISSN:0012-1606, eISSN:1095-564X, PubMed ID:28756106, Web of Science ID:WOS:000411302100021
  • Underlying mechanism of the cyclic migrating motor complex in Suncus murinus: a change in gastrointestinal pH is the key regulator               
    Anupom Mondal; Kouhei Koyama; Takashi Mikami; Taichi Horita; Shota Takemi; Sachiko Tsuda; Ichiro Sakata; Takafumi Sakai
    Physiological Reports, 巻:5, 号:1, 2017年01月, [査読有り]
    In the fasted gastrointestinal (GI) tract, a characteristic cyclical rhythmic migrating motor complex (MMC) occurs in an ultradian rhythm, at 90–120�min time intervals, in many species. However, the underlying mechanism directing this ultradian rhythmic MMC pattern is yet to be completely elucidated. Therefore, this study aimed to identify the possible causes or factors that involve in the occurrence of the fasting gastric contractions by using Suncus murinus a small model animal featuring almost the same rhythmic MMC as that found in humans and dogs. We observed that either intraduodenal infusion of saline at pH 8 evoked the strong gastric contraction or continuously lowering duodenal pH to 3-evoked gastric phase II-like and phase III-like contractions, and both strong contractions were essentially abolished by the intravenous administration of MA 2029 (motilin receptor antagonist) and D-Lys3-GHRP6 (ghrelin receptor antagonist) in a vagus-independent manner. Moreover, we observed that the prostaglandin E2-alpha (PGE2-α) and serotonin type 4 (5HT4) receptors play important roles as intermediate molecules in changes in GI pH and motilin release. These results suggest a clear insight mechanism that change in the duodenal pH to alkaline condition is an essential factor for stimulating the endogenous release of motilin and governs the fasting MMC in a vagus-independent manner. Finally, we believe that the changes in duodenal pH triggered by flowing gastric acid and the release of duodenal bicarbonate through the involvement of PGE2-α and 5HT4 receptor are the key events in the occurrence of the MMC.
    American Physiological Society, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.14814/phy2.13105
    DOI ID:10.14814/phy2.13105, ISSN:2051-817X, PubMed ID:28082431, SCOPUS ID:85009230741
  • Optogenetic Mapping of Cerebellar Inhibitory Circuitry Reveals Spatially Biased Coordination of Interneurons via Electrical Synapses               
    Jinsook Kim; Soojung Lee; Sachiko Tsuda; Xuying Zhang; Brent Asrican; Bernd Gloss; Guoping Feng; George J. Augustine
    CELL REPORTS, 巻:7, 号:5, 開始ページ:1601, 終了ページ:1613, 2014年06月, [査読有り]
    We used high-speed optogenetic mapping technology to examine the spatial organization of local inhibitory circuits formed by cerebellar interneurons. Transgenic mice expressing channelrhodopsin-2 exclusively in molecular layer interneurons allowed us to focally photostimulate these neurons, while measuring resulting responses in postsynaptic Purkinje cells. This approach revealed that interneurons converge upon Purkinje cells over a broad area and that at least seven interneurons form functional synapses with a single Purkinje cell. The number of converging interneurons was reduced by treatment with gap junction blockers, revealing that electrical synapses between interneurons contribute substantially to the spatial convergence. Remarkably, gap junction blockers affected convergence in sagittal slices, but not in coronal slices, indicating a sagittal bias in electrical coupling between interneurons. We conclude that electrical synapse networks spatially coordinate interneurons in the cerebellum and may also serve this function in other brain regions.
    CELL PRESS, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1016/j.celrep.2014.04.047
    DOI ID:10.1016/j.celrep.2014.04.047, ISSN:2211-1247, PubMed ID:24857665, Web of Science ID:WOS:000338324200025
  • Next-generation transgenic mice for optogenetic analysis of neural circuits analysis of neural circuits               
    Brent Asrican; George J. Augustine; Ken Berglund; Susu Chen; Nick Chow; Karl Deisseroth; Guoping Feng; Bernd Gloss; Riichiro Hira; Carolin Hoffmann; Haruo Kasai; Malvika Katarya; Jinsook Kim; John Kudolo; Li Ming Lee; Shun Qiang Lo; James Mancuso; Masanori Matsuzaki; Ryuichi Nakajima; Li Qiu; Gregory Tan; Yanxia Tang; Jonathan T. Ting; Sachiko Tsuda; Lei Wen; Xuying Zhang; Shengli Zhao
    FRONTIERS IN NEURAL CIRCUITS, 巻:7, 開始ページ:160, 2013年11月, [査読有り]
    Here we characterize several new lines of transgenic mice useful for optogenetic analysis of brain circuit function. These mice express optogenetic probes, such as enhanced halorhodopsin or several different versions of channelrhodopsins, behind various neuron-specific promoters. These mice permit photoinhibition or photostimulation both in vitro and in vivo. Our results also reveal the important influence of fluorescent tags on optogenetic probe expression and function in transgenic mice.
    FRONTIERS MEDIA SA, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.3389/fncir.2013.00160
    DOI ID:10.3389/fncir.2013.00160, ISSN:1662-5110, PubMed ID:24324405, Web of Science ID:WOS:000328276300001
  • High-speed optogenetic circuit mapping               
    George J. Augustine; Susu Chen; Harin Gill; Malvika Katarya; Jinsook Kim; John Kudolo; Li Ming Lee; Hyunjeong Lee; Shun Qiang Lo; Ryuichi Nakajima; Min-Yoon Park; Gregory Tan; Yanxia Tang; Peggy Teo; Sachiko Tsuda; Lei Wen; Su-In Yoon
    OPTOGENETICS: OPTICAL METHODS FOR CELLULAR CONTROL, 巻:8586, 開始ページ:858603, 2013年, [査読有り]
    Scanning small spots of laser light allows mapping of synaptic circuits in brain slices from transgenic mice expressing channelrhodopsin-2 (ChR2). The laser spots photostimulate presynaptic neurons expressing ChR2, while postsynaptic responses can be monitored in neurons that do not express ChR2. Correlating the location of the light spot with the amplitude of the postsynaptic response elicited at that location yields maps of the spatial organization of the synaptic circuits. This approach yields maps within minutes, which is several orders of magnitude faster than can be achieved with conventional paired electrophysiological methods. We have applied this high-speed technique to map local circuits in many brain regions. In cerebral cortex, we observed that maps of excitatory inputs to pyramidal cells were qualitatively different from those measured for interneurons within the same layers of the cortex. In cerebellum, we have used this approach to quantify the convergence of molecular layer interneurons on to Purkinje cells. The number of converging interneurons is reduced by treatment with gap junction blockers, indicating that electrical synapses between interneurons contribute substantially to the spatial convergence. Remarkably, gap junction blockers affect convergence in sagittal cerebellar slices but not in coronal slices, indicating sagittal polarization of electrical coupling between interneurons. By measuring limb movement or other forms of behavioral output, this approach also can be used in vivo to map brain circuits non-invasively. In summary, ChR2-mediated high-speed mapping promises to revolutionize our understanding of brain circuitry.
    SPIE-INT SOC OPTICAL ENGINEERING, 英語, 研究論文(国際会議プロシーディングス)
    DOI:https://doi.org/10.1117/12.2012404
    DOI ID:10.1117/12.2012404, ISSN:0277-786X, Web of Science ID:WOS:000322901400002
  • Probing the function of neuronal populations: Combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging               
    Sachiko Tsuda; Michelle Z. L. Kee; Catarina Cunha; Jinsook Kim; Ping Yan; Leslie M. Loew; George J. Augustine
    NEUROSCIENCE RESEARCH, 巻:75, 号:1, 開始ページ:76, 終了ページ:81, 2013年01月, [査読有り], [筆頭著者]
    Recent advances in our understanding of brain function have come from using light to either control or image neuronal activity. Here we describe an approach that combines both techniques: a micromirror array is used to photostimulate populations of presynaptic neurons expressing channelrhodopsin-2, while a red-shifted voltage-sensitive dye allows optical detection of resulting postsynaptic activity. Such technology allowed us to control the activity of cerebellar interneurons while simultaneously recording inhibitory responses in multiple Purkinje neurons, their postsynaptic targets. This approach should substantially accelerate our understanding of information processing by populations of neurons within brain circuits. (C) 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
    ELSEVIER IRELAND LTD, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1016/j.neures.2012.11.006
    DOI ID:10.1016/j.neures.2012.11.006, ISSN:0168-0102, eISSN:1872-8111, PubMed ID:23254260, Web of Science ID:WOS:000316435700013
  • Optogenetic mapping of brain circuitry               
    George J. Augustine, Ken Berglund, Harin Gill, Carolin Hoffmann, Malvika Katarya, Jinsook Kim, John Kudolo, Li Ming Lee, Molly Lee, Daniel Lo, Ryuichi Nakajima, Min Yoon Park, Gregory Tan, Yanxia Tang, Peggy Teo, Sachiko Tsuda, Lei Wen, and Su-In Yoon,
    SPIE Nanosystems in Engineering and Medicine, 巻:8548, 開始ページ:85483Y, 2012年, [査読有り]
  • Optogenetic probing of functional brain circuitry               
    James J. Mancuso; Jinsook Kim; Soojung Lee; Sachiko Tsuda; Nicholas B. H. Chow; George J. Augustine
    EXPERIMENTAL PHYSIOLOGY, 巻:96, 号:1, 開始ページ:26, 終了ページ:33, 2011年01月, [査読有り]
    Recently developed optogenetic technologies offer the promise of high-speed mapping of brain circuitry. Genetically targeted light-gated channels and pumps, such as channelrhodopsins and halorhodopsin, allow optical control of neuronal activity with high spatial and temporal resolution. Optogenetic probes of neuronal activity, such as Clomeleon and Mermaid, allow light to be used to monitor the activity of a genetically defined population of neurons. Combining these two complementary sets of optogenetic probes will make it possible to perform all-optical circuit mapping. Owing to the improved efficiency and higher speed of data acquisition, this hybrid approach should enable high-throughput mapping of brain circuitry.
    WILEY-BLACKWELL PUBLISHING, INC, 英語
    DOI:https://doi.org/10.1113/expphysiol.2010.055731
    DOI ID:10.1113/expphysiol.2010.055731, ISSN:0958-0670, PubMed ID:21056968, Web of Science ID:WOS:000285356800005
  • FAK-mediated extracellular signals are essential for interkinetic nuclear migration and planar divisions in the neuroepithelium               
    Sachiko Tsuda; Tadao Kitagawa; Shigeo Takashima; Shuichi Asakawa; Nobuyoshi Shimizu; Hiroshi Mitani; Akihiro Shima; Makiko Tsutsumi; Hiroshi Hori; Kiyoshi Naruse; Yuji Ishikawa; Hiroyuki Takeda
    JOURNAL OF CELL SCIENCE, 巻:123, 号:3, 開始ページ:484, 終了ページ:496, 2010年02月, [査読有り], [筆頭著者]
    During the development of the vertebrate nervous system, mitosis of neural progenitor cells takes place near the lumen, the apical side of the neural tube, through a characteristic movement of nuclei known as interkinetic nuclear migration (INM). Furthermore, during the proliferative period, neural progenitor cells exhibit planar cell divisions to produce equivalent daughter cells. Here, we examine the potential role of extracellular signals in INM and planar divisions using the medaka mutant tacobo (tab). This tab mutant shows pleiotropic phenotypes, including neurogenesis, and positional cloning identified tab as laminin gamma 1 (lamc1), providing a unique framework to study the role of extracelluar signals in neurogenesis. In tab mutant neural tubes, a number of nuclei exhibit abnormal patterns of migration leading to basally mislocalized mitosis. Furthermore, the orientation of cell division near the apical surface is randomized. Probably because of these defects, neurogenesis is accelerated in the tab neural tube. Detailed analyses demonstrate that extracellular signals mediated by the FAK pathway regulate INM and planar divisions in the neuroepithelium, possibly through interaction with the intracellular dynein-motor system.
    COMPANY OF BIOLOGISTS LTD, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1242/jcs.057851
    DOI ID:10.1242/jcs.057851, ISSN:0021-9533, eISSN:1477-9137, PubMed ID:20067997, Web of Science ID:WOS:000274337800019
  • Phenotypic analysis of a novel chordin mutant in medaka               
    Shigeo Takashima; Atsuko Shimada; Daisuke Kobayashi; Hayato Yokoi; Takanori Narita; Tomoko Jindo; Takahiro Kage; Tadao Kitagawa; Tetsuaki Kimura; Koshin Sekimizu; Akimitsu Miyake; Davin H. E. Setiamarga; Ryohei Murakami; Sachiko Tsuda; Shinya Ooki; Ken Kakihara; Motoki Hojo; Kiyoshi Naruse; Hiroshi Mitani; Akihiro Shima; Yuji Ishikawa; Kazuo Araki; Yumiko Saga; Hiroyuki Takeda
    DEVELOPMENTAL DYNAMICS, 巻:236, 号:8, 開始ページ:2298, 終了ページ:2310, 2007年08月, [査読有り]
    We have isolated and characterized a ventralized mutant in medaka (the Japanese killifish; Oryzias latipes), which turned out to have a mutation in the chordin gene. The mutant exhibits ventralization of the body axis, malformation of axial bones, over-bifurcation of yolk sac blood vessels, and laterality defects in internal organs. The mutant exhibits variability of phenotypes, depending on the culture temperature, from embryos with a slightly ventralized phenotype to those without any head and trunk structures. Taking advantages of these variable and severe phenotypes, we analyzed the role of Chordin-dependent tissues such as the notochord and Kupffer's vesicle (KV) in the establishment of left-right axis in fish. The results demonstrate that, in the absence of the notochord and KV, the medaka lateral plate mesoderm autonomously and bilaterally expresses spaw gene in a default state.
    WILEY-LISS, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1002/dvdy.21245
    DOI ID:10.1002/dvdy.21245, ISSN:1058-8388, PubMed ID:17654721, Web of Science ID:WOS:000248838400025
  • Right-elevated expression of charon is regulated by fluid flow in medaka Kupffer's vesicle               
    Motoki Hojo; Shigeo Takashima; Daisuke Kobayashi; Akira Sumeragi; Atsuko Shimada; Tatsuya Tsukahara; Hayato Yokoi; Takanori Narita; Tomoko Jindo; Takahiro Kage; Tadao Kitagawa; Tetsuaki Kimura; Koshin Sekimizu; Akimitsu Miyake; Davin Setiamarga; Ryohei Murakami; Sachiko Tsuda; Shinya Ooki; Ken Kakihara; Kiyoshi Naruse; Hiroyuki Takeda
    DEVELOPMENT GROWTH & DIFFERENTIATION, 巻:49, 号:5, 開始ページ:395, 終了ページ:405, 2007年06月, [査読有り]
    Recent studies have revealed that a cilium-generated liquid flow in the node has a crucial role in the establishment of the left-right (LR) axis in the mouse. In fish, Kupffer's vesicle (KV), a teleost-specific spherical organ attached to the tail region, is known to have an equivalent role to the mouse node during LR axis formation. However, at present, there has been no report of an asymmetric gene expressed in KV under the control of fluid flow. Here we report the earliest asymmetric gene in teleost KV, medaka charon, and its regulation. Charon is a member of the Cerberus/DAN family of proteins, first identified in zebrafish. Although zebrafish charon was reported to be symmetrically expressed in KV, medaka charon displays asymmetric expression with more intense expression on the right side. This asymmetric expression was found to be regulated by KV flow because symmetric and up-regulated charon expression was observed in flow-defective embryos with immotile cilia or disrupted KV. Taken together, medaka charon is a reliable gene marker for LR asymmetry in KV and thus, will be useful for the analysis of the early steps downstream of the fluid flow.
    BLACKWELL PUBLISHING, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1111/j.1440-169x.2007.00937.x
    DOI ID:10.1111/j.1440-169x.2007.00937.x, ISSN:0012-1592, eISSN:1440-169X, PubMed ID:17547649, Web of Science ID:WOS:000247777800004
■ MISC
  • Cellular and molecular mechanisms for the establishment of the lifelong dorsoventral compartment boundary in the teleost trunk               
    Kota Abe; Sayaka Tayama; Sachiko Tsuda; Atsuko Shimada; Hiroyuki Takeda
    巻:145, 開始ページ:S74, 終了ページ:S74, 2017年07月
    英語, 研究発表ペーパー・要旨(国際会議)
    DOI:https://doi.org/10.1016/j.mod.2017.04.174
    DOI ID:10.1016/j.mod.2017.04.174, ISSN:0925-4773, eISSN:1872-6356, Web of Science ID:WOS:000402994800248
■ 書籍等出版物
  • In vivo optical detection of membrane potentials in the cerebellum: voltage imaging of zebrafish, In Measuring Cerebellar Function (Ed: Sillito S)               
    Hiyoshi K; Fukuda N; Shiraishi A; Tsuda S, [分担執筆], 229-244
    Springer, 2021年12月
  • Optogenetics. In: Gerlai, R.T. (Ed.), Behavioral and Neural Genetics of Zebrafish.               
    Sachiko Tsuda, [分担執筆], pp. 279–292
    Elsevier, Academic Press, 2020年04月
  • Optogenetics Enables Selective Control of Cellular Electrical Activity. “Molecular Neuroendocrinology: From Genome to Physiology”               
    Ryuichi Nakajima; Sachiko Tsuda; Jinsook Kim; George Augustine, [共著], 275–300
    Wiley-Blackwell, 2016年
■ 講演・口頭発表等
  • 小型魚類を用いた集団行動の神経基盤の理解へ               
    津田佐知子
    第26回日本進化学会大会, 2024年08月, [招待有り]
  • 魚類における集団行動「群れ」の神経基盤とその発達を探る               
    津田 佐知子
    第47回日本神経科学大会, 2024年07月, [招待有り]
    英語, シンポジウム・ワークショップパネル(指名)
  • 光で膜電位ダイナミクスを観る -小型魚類における光イメージング-               
    津田佐知子
    第11回ニコンイメージングセンター 蛍光イメージング・ミニシンポジウム, 2024年05月, [招待有り]
    シンポジウム・ワークショップパネル(指名)
  • プルキンエ細胞集団の時空間ダイナミクスに観る 小脳発達そして群れ形成               
    津田佐知子
    日本小脳学会 第14回学術大会, 2024年03月, [招待有り]
    シンポジウム・ワークショップパネル(指名)
  • Spatiotemporal Dynamics of Purkinje Cell Populations and its Development               
    Sachiko Tsuda
    Gordon Research Conference Cerebellum, 2023年08月, [招待有り]
    2023年08月
  • ゼブラフィッシュにおける群れ行動と小脳プルキンエ細胞の関係               
    大湯 翼; 齋藤 魁登; 宮成 和浩; 佐藤 大我; 藤井 慶輔; 津田 佐知子
    第46回日本神経科学大会, 2023年08月
  • 光で探る脳の発生のしくみ               
    津田佐知子
    第38回 国際生物学賞記念シンポジウム "魚の生物学:その生態、進化と発生", 2022年12月, [招待有り]
    シンポジウム・ワークショップパネル(指名)
  • 光で捉える膜電位のダイナミクスと脳の発達               
    津田佐知子
    埼玉大学先端産業国際ラボラトリー メディカルイノベーション研究ユニット 第22回ワークショップ バイオイメージングの最前線-生体分子の可視化ー, 2022年12月, [招待有り]
  • How do neurons behave in populations and how are they formed during the development? -Spatiotemporal analysis in the zebrafish cerebellum-               
    Sachiko Tsuda
    IBRO-APRC Advanced School of Neuroscience 2022: Bioimaging and Proteogenomics for Cell-Based and Animal Research, 2022年11月, [招待有り]
    公開講演,セミナー,チュートリアル,講習,講義等
  • 小型魚類の群れ行動における 小脳プルキンエ細胞の機能               
    齋藤魁登; 佐藤大我; 津田佐知子
    第92回日本動物学会大会, 2022年09月
    口頭発表(一般)
  • Adaptation and Development of the Cerebellum in view of Eye Movements               
    Tomoya Murayama; Kanae Hiyoshi; Kaito Saito; Ryunosuke Togawa; Norihiro Katayama; Sachiko Tsuda
    第28回 小型魚類研究会, 2022年09月
    ポスター発表
  • Voltage imaging for the study of brain function and development in zebrafish               
    Sachiko Tsuda
    Merocyanine 540 and FlaSh Celebration, 2022年08月, [招待有り]
    口頭発表(招待・特別)
  • Population imaging of neurons in the zebrafish brain by genetically encoded voltage indicator, ArcLight               
    Asuka Shiraishi; Narumi Fukuda; Mari Hishinuma; Kanae Hiyoshi; Kyo Yamasu; Sachiko Tsuda
    第45回日本神経科学大会, 2022年07月
    ポスター発表
  • Optical probing of the resilience in olivocerebellar circuits by two-photon laser ablation and in vivo imaging of inferior olive neurons in zebrafish               
    Kanae Hiyoshi; Kaito Saito; Narumi Fukuda; Takahisa Matsuzaki; Hiroshi Yoshikawa; Sachiko Tsuda
    第27回 小型魚類研究会, 2021年09月
  • Voltage imaging in zebrafish brain by Genetically encoded voltage indicator, ArcLight               
    Asuka Shiraishi; Narumi Fukuda; Mari Hishinuma; Kanae Hiyoshi; Kyo Yamasu; Sachiko Tsuda
    第27回 小型魚類研究会, 2021年09月
  • 膜電位センサーArcLightを用いたゼブラフィッシュin vivo神経活動イメージング               
    Asuka Shiraish; Narumi Fukuda; Mari Hishinuma; Kanae Hishinuma; Kanae Hiyoshi; Kyo Yamasu; Sachiko Tsuda
    第44回日本神経科学大会, 2021年07月
  • Clustered behavior of Purkinje cell populations and its changes in the developing cerebellum of zebrafish               
    Hiyoshi K; Okuda E; Fukuda N; Saito K; Yamasu K; Tsuda S
    第44回日本神経科学大会, 2021年07月
    口頭発表(一般)
  • Optical interrogation of neural population dynamics in the zebrafish cerebellum               
    Sachiko Tsuda
    NIBB-Academia Sinica International Webinar of Aquatic Model Organisms for Basic Biology to Human Disease Models, 2021年03月, [招待有り]
    口頭発表(招待・特別)
  • Clustered behavior of Purkinje cell populations in sensorimotor integration in the zebrafish cerebellum               
    Kanae Hiyoshi; Eri Okuda; Narumi Fukuda; Kaito Saito; Masahiko Hibi; Kyo Yamasu; Sachiko Tsuda
    The 26th Japanese Medaka and Zebrafish Meeting, 2020年11月
    口頭発表(一般)
  • Anatomical and functional analysis of Inferior Olive-Cerebellar circuits in zebrafish larvae               
    Narumi Fukuda; Kanae Hiyoshi; Eri Okuda; Kyo Yamasu; Sachiko Tsuda
    The 26th Japanese Medaka and Zebrafish Meeting, 2020年11月
    口頭発表(一般)
  • ニューロンの集団ダイナミクスから見る小脳               
    Sachiko Tsuda
    第53回日本発生生物学会 ミニシンポジウム「The Cerebellum: Evolution, Development and Neuronal Circuits 」, 2020年05月, [招待有り]
    シンポジウム・ワークショップパネル(公募)
  • Identifying functional compartments in the developing cerebellum: Calcium and voltage imaging in zebrafish               
    K. Hiyoshi; N. Fukuda; K. Okumura; K. Yamasu; S. Tsuda
    第49回北米神経科学会大会, 2019年10月, [国際会議]
    英語, 口頭発表(一般)
  • 眼球運動におけるプルキンエ細胞の集団活動にみる小型魚類の小脳区画と発達 -魚を用いて小脳の構築メカニズムに迫る-               
    津田 佐知子
    第13回Motor control研究会, シンポジウム「小脳が関与する制御機能の最前線 -基礎と臨床の融合を目指して-」, 2019年08月, [招待有り], [国内会議]
    日本語, 口頭発表(招待・特別)
  • 発達中の小脳における機能的区画の3次元的理解: ゼブラフィッシュを用いた時空間的解析               
    Kanae Hiyoshi; Narumi Fukuda; Kanoko Okumura; Kyo Yamasu; Sachiko Tsuda
    第42回日本神経科学大会, 2019年07月, [国内会議]
    英語, 口頭発表(一般)
  • 膜電位イメージングにより捉えるゼブラフィッシュ小脳の発達               
    津田 佐知子
    第42回日本神経科学大会, シンポジウム「膜電位イメージング:新展開」, 2019年07月, [招待有り], [国内会議]
    シンポジウム・ワークショップパネル(指名)
  • 小型魚類ゼブラフィッシュに観る小脳神経回路とその発達               
    津田 佐知子
    第5回小脳システム研究会セミナー, 2019年06月, [招待有り], [国内会議]
    日本語, 口頭発表(招待・特別)
  • Spatiotemporal analysis of functional compartments in the developing cerebellum by calcium and voltage imaging               
    Sachiko Tsuda
    The 14th International Zebrafish Conference, 2019年06月, [国際会議]
    英語, 口頭発表(一般)
  • Probing the functional compartmentalization of the cerebellum in larval zebrafish               
    Sachiko Tsuda
    LB Cohen Symposium, 2019年05月, [招待有り], [国際会議]
    英語, 口頭発表(招待・特別)
  • Unraveling 3D structure of functional compartments in the developing cerebellum: Spatiotemporal analysis in zebrafish               
    Kanae Hiyoshi; Narumi Fukuda; Kyo Yamasu; Sachiko Tsuda
    52nd Annual Meeting of the Japanese Society of Developmental Biologists, 2019年05月, [国内会議]
    英語, 口頭発表(一般)
  • Toward understanding functional development of the cerebellar circuitry with GFP and voltage imaging               
    Sachiko Tsuda
    5th Nagoya International Symposium on Neural Circuits: A Decade after "Discovery and Development of GFP": Expansion and Expectation, 2019年03月, [招待有り], [国際会議]
  • 小型魚類を用いた小脳機能モジュール形成の時空間的解析               
    津田 佐知子
    第248回生理学東京談話会, 2018年12月, [招待有り], [国内会議]
  • Proving the functional development of the cerebellum: voltage imaging in the zebrafish brain               
    津田 佐知子
    早稲田大学先進理工学研究科 生命医科学専攻セミナー, 2018年10月, [招待有り]
    英語, 公開講演,セミナー,チュートリアル,講習,講義等
  • Development of the functional circuitry in the cerebellum: voltage imaging in zebrafish               
    津田 佐知子
    Voltage Imaging Mini Symposium at OIST, 2018年10月, [招待有り], [国際会議]
    英語, 口頭発表(招待・特別)
  • Voltage imaging of the developing brain using VSD and genetically-encoded voltage indicators in zebrafish               
    Tsuda Sachiko
    Merocyanine 540 45+1 Symposium, 2018年09月, [招待有り], [国際会議]
    英語, 口頭発表(招待・特別)
  • Optical measurement of neuronal activity in zebrafish using genetically encoded voltage indicators               
    Tsuda Sachiko
    第24回小型魚類研究会, 2018年08月, [国内会議]
    英語, 口頭発表(一般)
  • 小脳神経回路における機能的区画の形成:ゼブラフィッシュを用いた3次元的解析               
    日吉 加菜映; 弥益 恭; 津田 佐知子
    第41回日本神経科学大会, 2018年07月, [国内会議]
    英語, 口頭発表(一般)
  • Optical measurement of neuronal activity in zebrafish brain by genetically encoded voltage indicators               
    Kanoko Okumura; Hiroaki Miyazawa; Kanae Hiyoshi; Kazuhiro Maruyama; Hisashi Kakinuma; Ryunosuke Amo; Hitoshi Okamoto; Kyo Yamasu; Sachiko Tsuda
    第70回日本細胞生物学会第51回日本発生生物学会 合同大会, 2018年06月, [国内会議]
    英語, 口頭発表(一般)
  • ゼブラフィッシュ小脳神経回路の機能的発生 –膜電位イメージングによる試み-               
    Hiroaki Miyazawa; Kazuhiro Maruyama; Kanoko Okumura; Kanae Hiyoshi; Kyo Yamasu; Sachiko Tsuda
    The 88th Annual Meeting of the Zoological Society of Japan, 2017年09月
  • 光を用いたゼブラフィッシュ小脳神経回路の機能的発生               
    津田 佐知子
    計測自動制御学会 ライフエンジニアリング部門シンポジウム2017, 2017年09月, [招待有り]
  • Optical interrogation of cerebellar circuitry via voltage sensor imaging in zebrafish               
    Hiroaki Miyazawa; Kazuhiro Maruyama; Kyo Yamasu; Sachiko Tsuda
    40th Annual Meeting of the Japan Neuroscience Society, 2017年07月
  • Functional organization of cerebellar circuitry and its development               
    Tsuda Sachiko
    第22回国際動物学会/第87回日本動物学会大会合同大会, 2016年11月, [招待有り]
  • Dynamic migration of cell populations and functional compartmentalization in cerebellar development               
    津田 佐知子
    MBI Seminar (Mechanobiology Institute, National University of Singapore), 2016年10月, [招待有り]
    英語, 口頭発表(招待・特別)
  • Dynamic migration of cell populations and functional compartmentalization in cerebellar development: 4D imaging in zebrafish               
    Tsuda Sachiko
    7th Asia Oceania Zebrafish Meeting, 2016年10月
  • Structural and functional compartmentalization in cerebellar circuitry development: 4D imaging in zebrafish               
    Tsuda S; Kinno R; Miyazawa H; Yamasu K
    39th Annual Meeting of the Japan Neuroscience Society, 2016年07月
  • Probing the developmental process of functional circuitry in the cerebellum: an all-optogenetic approach in zebrafish               
    Tsuda S; Yamasu K
    38th Annual Meeting of the Japan Neuroscience Society, 2015年07月
  • Dynamic migratory behaviors of gbx2-expressing cells during brain compartmentalization -4D imaging in zebrafish embryos               
    Tsuda S; Yamasu K
    第48回日本発生生物学会/Asia Pacific Developmental Biology Network, 2015年05月
  • 神経組織形成のしくみと小脳神経回路の機能構成 -光技術を用いて構造と機能の関係に迫る-               
    津田 佐知子
    アドバンス生命理学特論 (名古屋大学大学院生命理学専攻), 2014年05月, [招待有り]
    日本語, 口頭発表(招待・特別)
  • All optical circuit mapping: combining optogenetics and voltage sensitive dye imaging               
    津田 佐知子
    Optical measurements of membrane potential symposium (Merocyanine 540 40 Symposium), 2012年08月, [招待有り], [国際会議]
    英語, 口頭発表(招待・特別)
  • Laminin regulates the interkinetic nuclear migration in neuroepithelial cells               
    津田 佐知子; 武田洋幸
    第41回日本発生生物学会, 2008年05月, [国内会議]
    英語, 口頭発表(一般)
■ 所属学協会
  • 日本発生生物学会
  • 日本神経科学学会
  • 日本動物学会
  • 日本分子生物学会
  • 北米神経科学会
■ 共同研究・競争的資金等の研究課題
  • 魚類の群れ行動を担う神経基盤および発達環境についての光解析               
    日本学術振興会, 科学研究費助成事業, 基盤研究(B), 2025年04月 - 2029年03月
    埼玉大学, 研究代表者
  • 光を用いた群れを担う神経ネットワークおよび発達環境の解明               
    旭硝子財団, 若手継続グラント(化学・生命分野), 2024年04月 - 2027年03月
    津田佐知子, 研究代表者
  • 小型魚類を用いた群れナビゲーションの階層ダイナミクスについての光解析               
    日本学術振興会, 科学研究費助成事業, 学術変革領域研究(A), 2024年04月01日 - 2026年03月31日
    津田 佐知子, 埼玉大学
    配分額(総額):7540000, 配分額(直接経費):5800000, 配分額(間接経費):1740000
    課題番号:24H01423
  • 小型魚類に生体膜電位センサーを用いた水質バイオモニタリング技術の開発               
    新エネルギー・産業技術総合開発機構(NEDO), 官民による若手研究者発掘支援事業(若サポ), 2023年07月 - 2026年03月
    津田佐知子, 研究代表者
  • 母児メンタルヘルスに関わる妊婦バイオマーカーの探索と機能解析               
    日本学術振興会, 科学研究費助成事業 基盤研究(C), 基盤研究(C), 2022年04月 - 2026年03月
    佐藤 智美; 梶原 健; 栗崎 知浩; 津田 佐知子, 埼玉医科大学
    配分額(総額):4160000, 配分額(直接経費):3200000, 配分額(間接経費):960000
    課題番号:22K09625
  • 自閉スペクトラム症に関わる初期胚環境要因の作用解析               
    埼玉医科大学, 埼玉大学との共同研究支援グラント, 令和6年度継続申請, 2024年10月 - 2025年09月
    佐藤 智美; 津田 佐知子; 梶原 健; 栗﨑 知浩, 埼玉医科大学 医学部
    課題番号:23-J-03
  • 中脳・後脳領域の発生発達におけるgbx遺伝子の多様な機能と発現制御の総合的解析               
    日本学術振興会, 科学研究費助成事業 基盤研究(C), 基盤研究(C), 2021年04月01日 - 2025年03月31日
    弥益 恭; 津田 佐知子, 埼玉大学, 研究分担者
    配分額(総額):4160000, 配分額(直接経費):3200000, 配分額(間接経費):960000
    脊椎動物の発生では、中脳や小脳の誘導とパターン形成において中脳後脳境界(MHB)がシグナル分泌センターとして働く。本研究では、MHB形成に関わるgbx遺伝子の機能と発現制御機構について、ゼブラフィッシュを用いて発生遺伝学研究を進めている。本年度は以下の成果を挙げた。
    まず、MHBの位置決定とこの部位でのその後の峡部形成に関わるとされながら機能については議論のあるgbx1とgbx2について、転写適応による表現型の消失を避けるため、CRISPR/Cas9法により遺伝子全域の欠失を試みた。各々の欠失にはすでに成功しており、現在系統化を進めている。
    本研究ではgbx発現細胞の追跡も予定しており、gbx2上流へのegfp遺伝子及びCre-ERT2遺伝子のノックインを相同組換え非依存的手法により実施した。今後、これらの系統魚を利用したgbx発現細胞の動態解析が可能となった。
    一方、gbxの転写制御機構の検討も進めており、gbx1については、エンハンサーの同定をめざし、上流遺伝子(asb10)までの全領域(5.5 kb)及び下流遺伝子(agap3)までの全領域(22 kb)の欠失を、やはりCRISPR/Cas9法により行った。上流全欠失についてはすでに系統化に成功しており、ホモ欠失胚において、原腸形成終了期における後方神経板でのgbx1発現は正常であるが、体節形成終了期での後脳発現が消失することを見いだした。つまり、上流5.5 kb内に後脳エンハンサーがあると推定された。この転写調節能は、egfpレポーターとの胚への共導入実験でも確認された。下流欠失変異体の作製にも成功しており、現在系統化を進めている。gbx2については、以前に同定した3つのエンハンサー各々の欠失を実施したが、gbx2の発現異常は見られなかった。また、上流全域(130 kb)と下流全域(8 kb)の欠失変異体作製にも着手した。
    課題番号:21K06182
  • 社会的行動に関わる母胎内環境要因の解析と予防策の探索               
    埼玉医科大学, 令和5年度 埼玉大学との共同研究支援グラント, 2023年10月 - 2024年09月
    佐藤 智美; 大湯 翼; 津田 佐知子; 梶原 健, 埼玉医科大学 医学部
    課題番号:23-J-03
  • 小脳活動の光計測と操作による小型魚類の階層ナビゲーションの理解               
    日本学術振興会, 科学研究費助成事業 学術変革領域研究(A), 学術変革領域研究(A), 2022年06月16日 - 2024年03月31日
    津田 佐知子, 埼玉大学
    配分額(総額):7800000, 配分額(直接経費):6000000, 配分額(間接経費):1800000
    課題番号:22H05645
  • ニューロンの集団ダイナミクスから見る小脳ネットワークの構築機構               
    加藤記念バイオサイエンス振興財団, 加藤記念研究助成, 2021年 - 2023年
    津田佐知子, 研究代表者
  • 胎児発育不全モデルを用いた社会的コミュニケーション行動に関わる神経回路の機能解析               
    埼玉医科大学, 令和3年度 埼玉大学との共同研究支援グラント, 基礎研究, 2021年10月 - 2022年09月
    津田 佐知子; 佐藤 智美; 齋藤 魁斗, 埼玉医科大学 医学部
    課題番号:21-J-04
  • 運動制御・学習の発達における小脳神経回路機能モジュールの時空間光解析               
    日本学術振興会, 科学研究費助成事業 基盤研究(C), 基盤研究(C), 2019年04月01日 - 2022年03月31日
    津田 佐知子; 平田 豊, 埼玉大学
    配分額(総額):4420000, 配分額(直接経費):3400000, 配分額(間接経費):1020000
    令和元年度には、ゼブラフィッシュ稚魚をもちいた小脳全域での神経活動計測・解析、計測データの統計解析、および、新規膜電位センサー(Genetically encoded voltage indicator, GEVI)を用いたゼブラフィッシュにおける膜電位イメージングを行った。


    まず、神経活動計測・解析について、小脳全域でのプルキンエ細胞のカルシウムイメージングを行動実験(眼球運動)と組み合わせて実施した。時空間データ解析などにより、プルキンエ細胞が異なる生理学的性質(活動パターン、機能)をもつ複数の集団からなることを明らかにし、その3次元分布を同定した。その過程で、プルキンエ細胞がなすクラスター構造を見出した。同様の結果が、計測データの相関分析、階層的クラスタリング解析などにおいても得られた。また、プルキンエ細胞の1細胞標識および3次元マッピングにより、ゼブラフィッシュ小脳におけるプルキンエ細胞などの解剖学的特徴を明らかにした。さらに、膜電位イメージングについて、高感度・高速のGEVIであるArcLightのゼブラフィッシュへの導入を行った。まず、transient発現系によりArcLightがゼブラフィッシュ脳において細胞膜に局在することを確認した上で、UAS-ArcLightのトランスジェニック系統を作製した。次に、ニューロン特異的にArcLightを発現する個体を用い、脊髄における高速膜電位イメージングを行った結果、脊髄ニューロンの自発的な活動を、1ショット、1細胞レベルで詳細に検出することに成功した。
    課題番号:19K06756
  • 脊椎動物胚の尾芽に存在する多分化能幹細胞の分化と脊髄発生の制御機構               
    日本学術振興会, 科学研究費助成事業 基盤研究(C), 基盤研究(C), 2018年04月01日 - 2022年03月31日
    弥益 恭; 津田 佐知子, 埼玉大学, 研究分担者
    配分額(総額):4420000, 配分額(直接経費):3400000, 配分額(間接経費):1020000
    (1)前年度に続き、加温誘導性ドミナントネガティブpou5f3遺伝子(hsp-en-pou5f3)を持つtransgenic魚を用い、pou5f3の機能阻害実験を行った。この機能阻害が尾芽形成へ及ぼす影響を体節形成期において分子レベルで解析した結果、pou5f3が多分化能制御遺伝子の発現は抑制する一方、尾芽未分化細胞の維持を行うtbxtaを活性化すること、神経発生遺伝子の発現を活性化するのに対し、中胚葉形成遺伝子は抑制すること、シグナル因子遺伝子fgf8a及びwnt3aを各々活性化、抑制することを示唆した。以上から、尾芽形成と体軸の伸長がpou5f3の制御下にあること、この遺伝子は特に脊髄伸長を推進することを示した。また、作製済みのpou5f3変異体の表現型解析に着手し、ドミナントネガティブ遺伝子による結果と対応する結果を得ている。
    (2)各種細胞間シグナル因子(BMP、FGF、Wnt)の尾芽発生での役割を、前年度より各シグナルの阻害剤で処理した胚において検討しており、2019年度は特にBMPシグナルに着目した。結果として、pou5f3及び各種尾芽関連遺伝子の発現にBMPシグナルが関与することを示した。
    (3)これまでの研究で、pou5f3が、soxB1遺伝子(sox3、sox19aなど)の発現を制御することにより神経発生を推進すると予想されたことから、sox3変異体とsox19a変異体の系統樹立を行った。予備的な表現型解析の結果、単独変異では特に体軸伸長に異常がないが、2重変異で体軸が伸長不全となることを示した。
    (4)一方、CRISPR/Cas9技術を利用してpou5f3遺伝子上流へのegfp遺伝子の相同組換え非依存的ノックインに成功し、実際に発生中の神経管におけるpou5f3発現細胞の視覚化に成功した(Tg(pou5f3:egfp)魚)。
    課題番号:18K06242
  • 新規膜電位センサーによる個体レベルでの神経活動のリアルタイム光計測               
    JST, ASTEPトライアウト, トライアウト, 2020年 - 2022年
    津田佐知子, 研究代表者
  • 小脳神経ネットワーク発達機構の解明を目指した 膜電位イメージングと統計解析技術の開発               
    旭硝子財団, 旭硝子財団研究助成, 2019年 - 2022年
    津田佐知子, 研究代表者
  • モデル動物等研究コーディネーティングネットワークによる希少・未診断疾患の病因遺伝子変異候補の機能解析研究               
    AMED, 未診断疾患イニシアチブ(IRUD)J-RDMM, 2018年 - 2020年
    津田佐知子
  • 膜電位イメージングを用いた小型魚類の小脳発達機構               
    成茂基金, 成茂動物科学振興基金, 2018年 - 2019年
    津田佐知子, 研究代表者
  • 光遺伝学を用いた小脳神経回路における区画構築の統合的解析               
    日本学術振興会, 科学研究費助成事業 若手研究(B), 若手研究(B), 2015年04月01日 - 2017年03月31日
    津田 佐知子, 埼玉大学, 研究代表者
    配分額(総額):4030000, 配分額(直接経費):3100000, 配分額(間接経費):930000
    脊椎動物において近年小脳は形態・機能的な区画を成し、知覚や運動情報の処理を行うことが示唆されている。我々は、ゼブラフィッシュに光技術(神経活動イメージング、光遺伝学)と行動実験(視覚・触覚)を組合せた実験系を作成し、これを用いた解析により、小脳発生における機能的区画の一部を同定した。また、小脳区画の3次元性、発生の進行に伴う変遷について、その一端を明らかにした。さらに、神経活動の直接的かつ高速観察が可能となる膜電位イメージングについて、新規膜電位センサーASAP1がゼブラフィッシュ脳において活動記録に使用可能であることを初めて示した。
    課題番号:15K20907
  • 体性感覚受容における小脳区画 の神経基盤とその構築メカニズム               
    花王芸術科学財団, 研究助成, 2016年 - 2017年
    津田佐知子, 研究代表者
  • Functional analysis of inhibitory circuitry in the cerebellum               
    Grass Foundation, Grass Fellowship, 2012年 - 2012年
    Sachiko Tsuda, ウッズホール海洋生物学研究所(米国), 研究代表者
  • ラミニンγ1の神経管組織構築における役割-メダカを用いた発生遺伝学的解析-               
    日本学術振興会, 科学研究費助成事業 特別研究員奨励費, 特別研究員奨励費, 2007年 - 2008年
    津田 佐知子, 東京大学
    配分額(総額):1800000, 配分額(直接経費):1800000
    神経管組織形成において、神経前駆細胞は脳質(apical)面で分裂し、生み出された神経細胞が、基底側に移動して新たな層を形成する。脳質面での分裂は種間で保存された現象であるが、分裂の位置決定のメカニズムは、未だあまり明らかでない。さらに、この細胞は、細胞周期依存的な核移動(interkinetic nuclear migration(INM))を示し、脳質面での核分裂はこのINMの一部といえるが、このINMのメカニズムは未だ理解には至っていない。このメカニズムを明らかにすることを目指し、神経上皮細胞の核分裂が異所的に起こるメダカlamininγ1突然変異体tacoboの解析を行った。これまでの解析により、tacobo胚において、神経上皮細胞の細胞極性や基本形態は正常であるが、核移動に異常が生じることを示し、これが、Laminin/FAKを介したシグナルにより制御されることを示した。今回、この核移動異常をもたらすメカニズムに焦点を当て、タイムラプス解析によりtacobo神経管において核の移動速度が低下していることを示した。さらに、核移動に重要であることが知られる微小管ダイニンシステムについて、dynamitin過剰発現実験により阻害したところ、神経管において異所分裂を生じたことから、ダイニンシステムがメダカ神経管でのINMに重要であることがわかった。また、このダイニンシステムと、Laminin/FAKシグナルが協調して機能する可能性を遺伝学的に示唆し、Lamininが細胞外からINMを制御するしくみの一端を明らかにした。
    課題番号:07J10806
■ 産業財産権
  • ゼブラフィッシュ個体の膜電位イメージング法               
    津田佐知子; 林彩音, 特許権
TOP