SEARCH
検索詳細
堤田 成政(ツツミダ ナルマサ)
理工学研究科 数理電子情報部門 | 准教授 |
工学部 情報工学科 |
研究者情報
■ 学位■ 研究分野
- 環境・農学, 環境動態解析
- 環境・農学, 農業環境工学、農業情報工学
- 人文・社会, 地理学
- 環境・農学, 環境影響評価
- 情報通信, 知覚情報処理, 地理情報科学、リモートセンシング
- 環境・農学, 自然共生システム
- 2024年01月 - 現在
地理情報システム学会, 代議員, 学協会 - 2020年 - 現在
OSGeo Japan, 運営委員, その他 - 2017年 - 現在
- 2016年04月 - 現在
地理情報システム学会, 若手分科会, 学協会 - 2019年11月 - 2021年10月
その他 - 2019年04月 - 2021年03月
日本生態学会, 企画委員会運営部会員, 学協会
業績情報
■ 論文- GEDI による樹冠高推定の空間誤差評価
堤田成政; 加藤顕
日本リモートセンシング学会誌, 2025年, [査読有り], [筆頭著者, 責任著者]
研究論文(学術雑誌) - Encapsulating Spatially Varying Relationships with a Generalized Additive Model
Alexis Comber; Paul Harris; Daisuke Murakami; Tomoki Nakaya; Narumasa Tsutsumida; Takahiro Yoshida; Chris Brunsdon
ISPRS International Journal of Geo-Information, 2024年12月, [査読有り]
研究論文(学術雑誌)
DOI:https://doi.org/10.3390/ijgi13120459
DOI ID:10.3390/ijgi13120459, ORCID:174122119 - Investigating the use of deep learning models for land cover classification from street‐level imagery
Narumasa Tsutsumida; Jing Zhao; Naho Shibuya; Kenlo Nasahara; Takeo Tadono
Ecological Research, 2024年09月, [査読有り], [筆頭著者]
英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.1111/1440-1703.12470
DOI ID:10.1111/1440-1703.12470, ORCID:158309848 - Combining Machine Learning with Physics-Based Mathematical Models for Near-Real-Time Clear-Sky Irradiance Prediction from Geostationary Satellite Imagery
Nifat Sultana; Narumasa Tsutsumida
IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 開始ページ:7472, 終了ページ:7477, 2024年07月, [査読有り], [最終著者]
IEEE, 研究論文(国際会議プロシーディングス)
DOI:https://doi.org/10.1109/igarss53475.2024.10642113
DOI ID:10.1109/igarss53475.2024.10642113 - Potential Application of Bayesian Changepoint Detection for Near-Real-Time Flood Monitoring
Narumasa Tsutsumida; Nifat Sultana; Huang Chenan
IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 開始ページ:3749, 終了ページ:3751, 2024年07月, [査読有り], [筆頭著者, 責任著者]
IEEE, 研究論文(国際会議プロシーディングス)
DOI:https://doi.org/10.1109/igarss53475.2024.10641333
DOI ID:10.1109/igarss53475.2024.10641333 - Retrieval of cherry flowering phenology on Flickr and YouTube: a case study along the Tarumi railway, Gifu, Japan
Nagai Shin; Taku M. Saitoh; Narumasa Tsutsumida
Frontiers in Sustainable Tourism, 巻:3, 2024年02月, [査読有り]
To further develop the accuracy of monitoring cherry flowering dates, we require phenological records from multiple points in multiple years at the catchment scale, as well as conventional in situ phenological observations, phenological data published on the Internet, and analysis using statistics of Internet search engines. We tried to detect the dates of cherry flowering phenology along the Tarumi railway, Gifu Prefecture, Japan, by using Flickr, an image hosting service, and YouTube, an online video sharing and social media platform. We detected full bloom of Cerasus ×yedoensis and Cerasus jamasakura mainly at cherry blossom viewing spots (around some train stations) on Flickr and at both viewing spots and multiple points in the landscape along the railway on YouTube. Despite local climatological differences along the railway, the detected full blooming dates corresponded not only with each other, but also with the full bloom period of Neodani Usuzumi-zakura (Cerasus itosakura), a famous tree with long-term detailed records. We could not detect the date and location in many photographs on Flickr or in any videos on YouTube. However, the usefulness of both platforms is supported by the facts that we can evaluate the year-to-year variability of full bloom dates, especially at cherry blossom viewing spots, and detect flowering phenology even in a non-photogenic landscape. By applying our method to other railways, we expect to collect multi-year records of plant phenology dates at multiple points that cannot be collected by older methods.
Frontiers Media SA, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.3389/frsut.2024.1280685
DOI ID:10.3389/frsut.2024.1280685, eISSN:2813-2815 - Mapping cherry blossom phenology using a semi-automatic observation system with street level photos
Narumasa Tsutsumida; Shuya Funada
Ecological Informatics, 巻:78, 開始ページ:102314, 終了ページ:102314, 2023年12月, [査読有り], [筆頭著者, 責任著者]
Elsevier BV, 研究論文(学術雑誌)
DOI:https://doi.org/10.1016/j.ecoinf.2023.102314
DOI ID:10.1016/j.ecoinf.2023.102314, ISSN:1574-9541 - Geographically weighted accuracy for hard and soft land cover classifications: 5 approaches with coded illustrations
Alexis Comber; Naru Tsutsumida
International Journal of Remote Sensing, 巻:44, 号:19, 開始ページ:6233, 終了ページ:6257, 2023年10月, [査読有り]
Informa UK Limited, 研究論文(学術雑誌)
DOI:https://doi.org/10.1080/01431161.2023.2264503
DOI ID:10.1080/01431161.2023.2264503, ISSN:0143-1161, eISSN:1366-5901 - An Index-Based Flood Mapping Using Stokes Parameters of Multitemporal SAR Images: 2019 Hagibis Flood Event of Ibaraki, Japan
Ruma Adhikari; Narumasa Tsutsumida; Alok Bhardwaj
IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023年07月, [査読有り]
IEEE, 研究論文(国際会議プロシーディングス)
DOI:https://doi.org/10.1109/igarss52108.2023.10281581
DOI ID:10.1109/igarss52108.2023.10281581 - Mapping Forest Vertical Structure Attributes with GEDI, Sentinel-1, and Sentinel-2
Narumasa Tsutsumida; Akira Kato; Takeshi Osawa; Hideyuki Doi
IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023年07月, [査読有り], [筆頭著者, 責任著者]
IEEE, 研究論文(国際会議プロシーディングス)
DOI:https://doi.org/10.1109/igarss52108.2023.10283403
DOI ID:10.1109/igarss52108.2023.10283403 - 10-Meter Resolution Land Cover Classification Mapping Using Sentinel-1 & 2 and Dynamic World
Narumasa Tsutsumida; Kenlo Nasahara; Takeo Tadono; Tanya Birch; Tyler Erickson
IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023年07月, [査読有り], [筆頭著者, 責任著者]
IEEE, 研究論文(国際会議プロシーディングス)
DOI:https://doi.org/10.1109/igarss52108.2023.10282556
DOI ID:10.1109/igarss52108.2023.10282556 - A linearization for stable and fast geographically weighted Poisson regression
Daisuke Murakami; Narumasa Tsutsumida; Takahiro Yoshida; Tomoki Nakaya; Binbin Lu; Paul Harris
International Journal of Geographical Information Science, 開始ページ:1, 終了ページ:22, 2023年05月, [査読有り]
Informa UK Limited, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.1080/13658816.2023.2209811
DOI ID:10.1080/13658816.2023.2209811, ISSN:1365-8816, eISSN:1362-3087, ORCID:134927349 - Spatiotemporal Mapping of Cherry Blossom Blooming by Semi-Automatic Observation System with Street-Level Photos
Narumasa Tsutsumida; Shuya Funada
2023年04月
Abstract
The importance of floral phenology as a critical indicator of regional climate change and ecosystem services is widely recognized. The annual blooming of cherry blossoms is a nationally celebrated event in Japan, and historical phenological records have been used to document regional climate change. The cultural ecosystem services provided by this phenomenon are important as they not only signal the arrival of spring but also offer a picturesque spring landscape. Despite its importance, constructing a spatiotemporal record of cherry blossom blooming is challenging due to the limited coverage of traditional stationary observations. To address this issue, citizen-based observation programs and remote sensing applications have been implemented; nevertheless, these strategies are still limited by infrequent and insufficient observations throughout space and time. To compensate, we developed a flower detection model for geographically and temporally dispersed street-level photos that may be used as the core component of a semi-automatic observation system. Specifically, we developed a customized YOLOv4 model for cherry blossom detection from street-level photos obtained through Mapillary, one of the social sensing data repositories. The detection model achieved an overall accuracy, recall, and precision of 86.7%, 70.3%, and 90.1%, respectively. By using observation coordinates and dates attached to Mapillary photos, we mapped the probability of cherry trees blooming in a spatial grid of dimensions 10 m x 10 m on a daily basis. With sufficient observations, start, peak, and end of blooming were estimated through time series analysis. A case study conducted at Saitama University’s main campus in 2022 confirmed the possibility of mapping the presence of cherry blossoms and their blooming timing automatically. Since our approach relies solely on geotagged street-level photos that can be taken by anyone with no prior knowledge of cherry tree species identification, we anticipate that it will be easier to build blooming records over space and time than conventional stationary observations or citizen-based observation programs. This novel approach also has potential applications for detecting other species as well.
Cold Spring Harbor Laboratory
DOI:https://doi.org/10.1101/2023.04.13.536831
DOI ID:10.1101/2023.04.13.536831 - Prediction of the visit and occupy of the sika deer (Cervus nippon) during the summer season using a virtual ecological approach
Takeshi Osawa; Narumasa Tsutsumida; Hayato Iijima; Kimiko Okabe
Scientific Reports, 巻:13, 号:1, 2023年03月, [査読有り]
Abstract
Prediction of the spaces used by animals is an important component of wildlife management, but requires detailed information such as animal visit and occupy in a short span of the target species. Computational simulation is often employed as an effective and economical approach. In this study, the visit and occupy of sika deer (Cervus nippon) during the plant growing season were predicted using a virtual ecological approach. A virtual ecological model was established to predict the visit and occupy of sika deer based on the indices of their food resources. The simulation results were validated against data collected from a camera trapping system. The study was conducted from May to November in 2018 in the northern Kanto region of Japan. The predictive performance of the model using the kernel normalized difference vegetation index (kNDVI) was relatively high in the earlier season, whereas that of the model using landscape structure was relatively low. The predictive performance of the model using combination of the kNDVI and landscape structure was relatively high in the later season. Unfortunately, visit and occupy of sika deer could not predict in November. The use of both models, depending on the month, achieved the best performance to predict the movements of sika deer.
Springer Science and Business Media LLC, 研究論文(学術雑誌)
DOI:https://doi.org/10.1038/s41598-023-31269-5
DOI ID:10.1038/s41598-023-31269-5, eISSN:2045-2322 - The Impact of Changes in Anthropogenic Activity Caused by COVID-19 Lockdown on Reducing Nitrogen Dioxide Levels in Thailand Using Nighttime Light Intensity
Nutnaree Thongrueang; Narumasa Tsutsumida; Tomoki Nakaya
Sustainability (Switzerland), 巻:15, 号:5, 2023年03月, [査読有り]
Coronavirus disease 2019 (COVID-19) was first identified in Wuhan, China and has since become a pandemic. Thailand’s first lockdown started in the middle of March 2020, restricting anthropogenic activities and inter-provincial traffic. There are few studies on the association between nitrogen dioxide (NO2) levels and human activity, primarily because of the difficulty in identifying the changes in anthropogenic activities at a high geographical resolution. Here, we have highlighted satellite-based nighttime light (NTL) as an indicator of anthropogenic activities and investigated the relationship between NTL and reductions in NO2 levels during Thailand’s first lockdown in 2020. We applied geographically weighted regression (GWR) to analyze the regional relationship between NTL and changes in NO2 levels during the first lockdown. Sentinel-5 Precursor satellite observation indicated that the NO2 levels decreased by 10.36% compared with those of the same period in 2019. The level of NTL decreased in most urban and built-up (31.66%) categories. According to GWR results, NTL and NO2 levels represent a positive local correlation around the country’s central, western, and northern parts and negative correlations in the peripheral regions. These findings imply that NTL observations can be used to monitor changes in NO2 levels caused by urban anthropogenic activities.
研究論文(学術雑誌)
DOI:https://doi.org/10.3390/su15054296
Scopus:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85149692744&origin=inward
Scopus Citedby:https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85149692744&origin=inward
DOI ID:10.3390/su15054296, eISSN:2071-1050, SCOPUS ID:85149692744 - Perspective: Improving the accuracy of plant phenology observations and land-cover and land-use detection by optical satellite remote-sensing in the Asian tropics
Nagai Shin; Chifuyu Katsumata; Tomoaki Miura; Narumasa Tsutsumida; Tomoaki Ichie; Ayumi Kotani; Michiko Nakagawa; Kho Lip Khoon; Hideki Kobayashi; Tomo’omi Kumagai; Shunsuke Tei; Runi anak Sylvester Pungga; Taizo Yamada; Akihiro Kameda; Masayuki Yanagisawa; Kenlo Nishida Nasahara; Hiroyuki Muraoka; Kazuhito Ichii; Yuji Tokumoto
Frontiers in Forests and Global Change, 巻:6, 2023年02月, [査読有り]
Recent advances in satellite-borne optical sensors led to important developments in the monitoring of tropical ecosystems in Asia, which have been strongly affected by recent anthropogenic activities and climate change. Based on our feasibility analyses conducted in Indonesia in Sumatra and Sarawak, Malaysia in Borneo, we discuss the current situation, problems, recent improvements, and future tasks regarding plant phenology observations and land-cover and land-use detection. We found that the Multispectral Instrument (MSI) on board the Sentinel-2A/2B satellites with a 10-m spatial resolution and 5-day observational intervals could be used to monitor phenology among tree species. For the Advanced Himawari Imager (AHI) on board the Himawari-8 geostationary satellite with a 1,000-m spatial resolution and 10-min observational intervals, we found that the time-series in vegetation indices without gaps due to cloud contamination may be used to accurately detect the timing and patterns of phenology among tree species, although the spatial resolution of the sensor requires further improvement. We also found and validated that text and pictures with geolocation information published on the Internet, and historical field notes could be used for ground-truthing land cover and land use in the past and present time. The future development of both high frequency (≤ 10 min) and high spatial resolution (≤ 10 m) optical sensors aboard satellites is expected to dramatically improve our understanding of ecosystems in the tropical Asia.
Frontiers Media SA, 研究論文(学術雑誌)
DOI:https://doi.org/10.3389/ffgc.2023.1106723
DOI ID:10.3389/ffgc.2023.1106723, eISSN:2624-893X - Large, concealed islands in the urban sea: Scattered surrounding green space enhances the quality of grassland habitats in urban parks, Tokyo
Seiichiro Ohata; Takeshi Osawa; Nozomu Sato; Narumasa Tsutsumida
Urban Ecosystems, 巻:26, 号:3, 開始ページ:641, 終了ページ:649, 2022年12月, [査読有り]
Springer Science and Business Media LLC, 研究論文(学術雑誌)
DOI:https://doi.org/10.1007/s11252-022-01311-x
DOI ID:10.1007/s11252-022-01311-x, ISSN:1083-8155, eISSN:1573-1642 - Assessing the potential repercussions of the COVID-19 pandemic on global SDG attainment
Hideyuki Doi; Takeshi Osawa; Narumasa Tsutsumida
Discover Sustainability, 巻:3, 号:1, 2022年12月, [査読有り]Abstract The coronavirus disease (COVID-19) pandemic has led to a worldwide lockdown, and this restriction on human movements and activities has significantly affected society and the environment. Some effects might be quantitative, but some might be qualitative, and some effects could prolong immediately and/or persistently. This study examined the consequences of global lockdown for human movement and nitrogen dioxide (NO2) emissions using an air pollution index and dataset and satellite image analyses. We also evaluated the immediate (during lockdown) and persistent (after lockdown) effects of lockdown on achieving the SDGs. Our analysis revealed a drastic reduction in human movement and NO2 emissions and showed that many SDGs were influenced both immediately and persistently due to the global lockdown. We observed the immediate negative impacts on four goals and positive impacts on five goals, especially those concerning economic issues and ecosystem conservation, respectively. The persistent effects of lockdown were likely to be predominantly reversed from their immediate impacts due to economic recovery. The global lockdown has influenced the global community’s ability to meet the SDGs, and our analysis provides powerful insights into the status of the internationally agreed-upon SDGs both during and after the COVID-19-induced global lockdown.
Springer Science and Business Media LLC, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.1007/s43621-021-00067-2
DOI ID:10.1007/s43621-021-00067-2, eISSN:2662-9984 - Geographically Varying Coefficient Regression: GWR-Exit and GAM-On?
Alexis, Comber; Paul, Harris; Daisuke, Murakami; Narumasa,Tsutsumida; Chris, Brunsdon
15th International Conference on Spatial Information Theory (COSIT 2022), 巻:240, 開始ページ:13:1, 終了ページ:13:10, 2022年09月, [査読有り]
英語, 研究論文(国際会議プロシーディングス)
DOI:https://doi.org/10.4230/LIPIcs.COSIT.2022.13
DOI ID:10.4230/LIPIcs.COSIT.2022.13 - Large-Scale Spatial Prediction by Scalable Geographically Weighted Regression: Comparative Study
Daisuke, Murakami; Narumasa, Tsutsumida; Takahiro, Yoshida; Tomoki, Nakaya
15th International Conference on Spatial Information Theory (COSIT 2022), 巻:240, 開始ページ:12:1, 終了ページ:12:5, 2022年09月, [査読有り]
英語, 研究論文(国際会議プロシーディングス)
DOI:https://doi.org/10.4230/LIPIcs.COSIT.2022.12
DOI ID:10.4230/LIPIcs.COSIT.2022.12, DBLP ID:conf/cosit/MurakamiTYN22 - A Comparison of Geographically Weighted Principal Components Analysis Methodologies
Narumasa, Tsutsumida; Daisuke, Murakami; Takahiro, Yoshida; Tomoki, Nakaya; Binbin, Lu; Paul, Harris; Alexis, Comber
15th International Conference on Spatial Information Theory (COSIT 2022), 巻:240, 開始ページ:21:1, 終了ページ:21:6, 2022年09月, [査読有り], [筆頭著者, 責任著者]
英語, 研究論文(国際会議プロシーディングス)
DOI:https://doi.org/10.4230/LIPIcs.COSIT.2022.21
DOI ID:10.4230/LIPIcs.COSIT.2022.21, DBLP ID:conf/cosit/TsutsumidaMYNLH22 - Flood vulnerability assessment at the local scale using remote sensing and GIS techniques: a case study in Da Nang City, Vietnam
Tran Thi An; Saizen Izuru; Tsutsumida Narumasa; Venkatesh Raghavan; Le Ngoc Hanh; Nguyen Van An; Nguyen Vinh Long; Ngo Thi Thuy; Truong Phuoc Minh
Journal of Water and Climate Change, 巻:13, 号:9, 開始ページ:3217, 終了ページ:3238, 2022年08月, [査読有り]
Abstract
This paper has developed a cost-efficient framework for flood vulnerability assessment at a local scale using a multi-parametric approach integrated with the Open Source Geographical Information System (GIS) and Open Remote Sensing data. The study focuses on generating a set of criteria considering three dimensions of flood vulnerability: exposure, sensitivity, and adaptive capacity (AC) on an index-based approach. These indicators were decided based on a robust analysis considering the physical and socio-economic conditions of the study area. The flood exposure was generated from the geomorphological and hydrological parameters integrated with the flood water depth, the distance to river channels, and the Modified Normalized Difference Water Index. The flood sensitivity was determined by the aggregation of local income, land use, poverty index, population density, and other parameters reflecting the socio-economic condition. The AC has been evaluated based on the Normalized Difference Vegetation Index, the density of the community service facilities, and other factors related to the coping capacity to flood. Finally, the flood vulnerability at the local scale was determined based on the integration of its contributing factors using the Analytical Hierarchical Process-based aggregated model. Results indicated that a total of 20 parameters impacted the flood vulnerability of the research area. The findings also confirmed that among the indicators of flood vulnerability of Da Nang City, the flood depth, land-use condition, and drainage system are the key factors affecting the vulnerability level. The empirical assessment showed that the study area is significantly affected by flood vulnerability with more than 60% of the area having the vulnerability level from moderate to very high. In addition, this paper points out that the vulnerability research should be localized and is not always based on the administrative units. This practice can make the decision-making process and adaptation plan more appropriate locally. Especially, this study attempted to evaluate the accuracy of the flood vulnerability map for the first time by using field survey data and the statistical report on flood damage that most of the previous studies have not conducted yet. This framework provides a valuable toolkit for flood management in data-scarce regions all over the world.
IWA Publishing, 研究論文(学術雑誌)
DOI:https://doi.org/10.2166/wcc.2022.029
DOI ID:10.2166/wcc.2022.029, ISSN:2040-2244, eISSN:2408-9354 - Monitoring of cherry flowering phenology with Google Trends
Nagai Shin; Ayumi Kotani; Shunsuke Tei; Narumasa Tsutsumida
PLOS ONE, 巻:17, 号:7, 開始ページ:e0271648, 終了ページ:e0271648, 2022年07月, [査読有り]
Google Trends (GT) is an online tool designed for searching for changes over time. We assessed its use for evaluating changes in the timing of cherry flowering phenology, which is of intense interest to Japanese people. We examined the relationship between time-series of relative search volume (RSV: relative change in search requests over time obtained from the GT access engine) and cherry flowering information published on websites (as ground truth) in relation to three famous ancient cherry trees. The time-series of RSV showed an annual bell-shaped seasonal variability, and the dates of the maximum RSV tended to correspond to the dates of full bloom. Our results suggest that GT allows monitoring of multiple famous cherry flowering sites where we cannot obtain long-term flowering data to evaluate the spatiotemporal variability of cherry flowering phenology.
Public Library of Science (PLoS), 研究論文(学術雑誌)
DOI:https://doi.org/10.1371/journal.pone.0271648
DOI ID:10.1371/journal.pone.0271648, eISSN:1932-6203 - Land Cover Classification from Street-Level Photos
Narumasa Tsutsumida; Jing Zhao; Kenlo Nasahara; Takeo Tadono
IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 開始ページ:5524, 終了ページ:5526, 2022年07月, [査読有り], [筆頭著者, 責任著者]
Land cover classification mapping is a process to depict terrestrial surfaces by pre-defined thematic classes across space and is often implemented by a supervised classification approach with satellite and/or aero images. However, due to labor-intensive and time-consuming tasks to identify land cover class from those images manually, it is challenging to build rich-quantity and high-quality reference data sets for the mapping. To capture land covers on the ground, we developed a deep learning model to estimate land covers from street-level photos. A transfer learning from the pre-trained DenseNet was applied, and this model yields an overall accuracy of 0.91. This model contributes to the subsequent study of building a semiautomatic reference database from geo-tagged street-level photos.
IEEE, 英語, 研究論文(国際会議プロシーディングス)
DOI:https://doi.org/10.1109/igarss46834.2022.9883194
DOI ID:10.1109/igarss46834.2022.9883194, ISSN:2153-6996, Web of Science ID:WOS:000920916605151 - Exploratory Spatial Data Analysis with gwpcorMapper: an Interactive Mapping Tool for Geographically Weighted Correlation and Partial Correlation
J. E. H. Percival; N. Tsutsumida; D. Murakami; T. Yoshida; T. Nakaya
Journal of Geovisualization and Spatial Analysis, 巻:6, 号:1, 2022年06月, [査読有り], [責任著者]
Springer Science and Business Media LLC, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.1007/s41651-022-00111-3
DOI ID:10.1007/s41651-022-00111-3, ISSN:2509-8810, eISSN:2509-8829, ORCID:113826430 - Evaluation of Land Surface Phenology for Autumn Leaf Color Change Based on Citizen Reports across Japan
Narumasa Tsutsumida; Nagai Shin; Tomoaki Miura
Remote Sensing, 巻:14, 号:2017, 2022年04月, [査読有り], [筆頭著者, 責任著者]
Autumn foliage color is an important phenological characteristic associated with climate and appeals to populations as a cultural ecosystem service (CES). Land surface phenology (LSP) analyzed using time-series remotely sensed imagery can facilitate the monitoring of autumn leaf color change (ALCC); however, the monitoring of autumn foliage by LSP approaches is still challenging because of complex spatio-temporal ALCC patterns and observational uncertainty associated with remote sensing sensors. Here, we evaluated the performance of several LSP analysis approaches in estimation of LSP-based ALCCs against the ground-level autumn foliage information obtained from 758 sightseeing (high CES) sites across Japan. The ground information uniquely collected by citizens represented ALCC stages of greening, early, peak, late, and defoliation collected on a daily basis. The ALCC was estimated using a second derivative approach, in which normalized difference vegetation index (NDVI), kernel normalized difference vegetation index (kNDVI), enhanced vegetation index (EVI), two-band enhanced vegetation index (EVI2), and green red vegetation index (GRVI) were applied based on MODerate resolution Imaging Spectroradiometer (MODIS) MOD09A1 with four (Beck, Elmore, Gu, and Zhang) double logistic smoothing methods in 2020. The results revealed inconsistency in the estimates obtained using different analytical methods; those obtained using EVI with the Beck model estimated the peak stage of the ALCC relatively well, while the estimates obtained using other indices and models had high discrepancies along with uncertainty. Our study provided insights on how the LSP approach can be improved toward mapping the CESs offered by autumn foliage.
MDPI, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.3390/rs14092017
DOI ID:10.3390/rs14092017, eISSN:2072-4292, Web of Science ID:WOS:000795327000001 - Mapping cherry blossoms from geotagged street-level photos
Shuya Funada; Narumasa Tsutsumida
IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 2022年01月, [査読有り], [最終著者, 責任著者]
Cold Spring Harbor Laboratory, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.1101/2022.01.18.476550
DOI ID:10.1101/2022.01.18.476550, ORCID:106981751 - Usefulness of Social Sensing Using Text Mining of Tweets for Detection of Autumn Phenology
Nagai Shin; Yasuyuki Maruya; Taku M. Saitoh; Narumasa Tsutsumida
Frontiers in Forests and Global Change, 巻:4, 2021年10月, [査読有り]
Can social sensing detect the spatio-temporal variability of autumn phenology? We analyzed data published on the Twitter social media website through the text mining of non-geotagged tweets regarding a forested, mountainous region in Japan. We were able to map the spatial characteristic of tweets regarding peak leaf coloring along an altitudinal gradient and found that text mining of tweets is a useful approach to the in situ collection of autumn phenology information at multiple locations over a broad spatial scale. Potential uncertainties in this approach were examined and compared to other online research sources and methods, including Google Trends and information on widely available websites and live camera images. Finally, we suggest ways to reduce the uncertainties identified within our approach and to create better integration between text mining of tweets and other online research data sources and methods.
Frontiers Media SA, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.3389/ffgc.2021.659910
DOI ID:10.3389/ffgc.2021.659910, eISSN:2624-893X, Web of Science ID:WOS:000710797200001 - Stable geographically weighted Poisson regression for count data
Murakami D; Tsutsumida N; Yoshida T; Nakaya T; Lu B; Harris P
GIScience, 2021年, [査読有り]
英語, 研究論文(国際会議プロシーディングス) - Geographically weighted regression for compositional data: An application to the U.S. household income compositions
Yoshida T; Murakami D; Seya H; Tsutsumida N; Nakaya T
GIScience, 2021年, [査読有り]
英語, 研究論文(国際会議プロシーディングス)
DOI:https://doi.org/10.25436/E2G599
DOI ID:10.25436/E2G599 - 地理的加重法の研究動向と今後の展望
堤田成政; 吉田崇紘; 村上大輔; 中谷友樹
GIS -理論と応用, 巻:29, 号:1, 開始ページ:11, 終了ページ:21, 2021年, [査読有り], [筆頭著者, 責任著者]
地理情報システム学会 ; [1993]-, 日本語, 研究論文(学術雑誌)
ISSN:1340-5381, CiNii Articles ID:40022818340, CiNii Books ID:AN10457305 - A GIS-based Approach for Flood Vulnerability Assessment in Hoa Vang District, Danang City, Vietnam
Tran T.A; Venkatesh R; Nguyen V. L; Saizen I; Tsutsumida N
IOP Conference Series: Earth and Environmental Science, 巻:652, 号:1, 開始ページ:012003, 2021年, [査読有り]
英語, 研究論文(国際会議プロシーディングス) - Carbon Stock Estimation of Selected Watersheds in Laguna, Philippines Using InVEST
Dida J; Tiburan C; Tsutsumida N; Saizen I
Philippine Journal of Science, 巻:150, 号:2, 開始ページ:501, 終了ページ:513, 2021年, [査読有り]
英語, 研究論文(学術雑誌) - Impact of continuous Jakarta megacity urban expansion on the formation of the Jakarta-Bandung conurbation over the rice farm regions
Ernan Rustiadi; Andrea Emma Pravitasari; Yudi Setiawan; Setyardi Pratika Mulya; Didit Okta Pribadi; Narumasa Tsutsumida
Cities, 開始ページ:103000, 終了ページ:103000, 2020年10月, [査読有り]
Elsevier BV, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.1016/j.cities.2020.103000
DOI ID:10.1016/j.cities.2020.103000, ISSN:0264-2751 - A Geographically Weighted Total Composite Analysis for Soft Classification
Tsutsumida N.; Yoshida T.; Murakami D.; Nakaya T.
IGARSS 2020, 2020年07月, [査読有り], [筆頭著者]
英語, 研究論文(国際会議プロシーディングス) - Mapping Fragmented Impervious Surface Areas Overlooked by Global Land-Cover Products in the Liping County, Guizhou Province, China
Jing Zhao; Narumasa Tsutsumida
Remote Sensing, 巻:12, 号:9, 開始ページ:1527, 2020年05月, [査読有り], [最終著者, 責任著者]
英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.3390/rs12091527
DOI ID:10.3390/rs12091527, ORCID:73773024 - Scalable GWR: A linear-time algorithm for large-scale geographically weighted regression with polynomial kernels
Murakami D.; Tsutsumida N.; Yoshida T.; Nakaya T.; Lu B.
Annals of the American Association of Geographers, 巻:111, 号:2, 開始ページ:1, 終了ページ:22, 2020年, [査読有り]
Informa UK Limited, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.1080/24694452.2020.1774350
DOI ID:10.1080/24694452.2020.1774350, ISSN:2469-4452, eISSN:2469-4460 - Geographically Weighted Non-negative Principal Components Analysis for Exploring Spatial Variation in Multidimensional Composite Index
Tsutsumida N; Murakami D; Yoshida T; Nakaya T; Lu B; P. Harris
Geocomputation 2019, 2019年09月, [査読有り], [筆頭著者, 責任著者]
英語, 研究論文(国際会議プロシーディングス) - Scalable geographically weighted regression for big data
Murakami D; Tsutsumida N; Yoshida T; Nakaya T; Lu B
Geocomputation 2019, 2019年09月, [査読有り]
英語, 研究論文(国際会議プロシーディングス) - Interactive mapping for geographically weighted correlation in big census data
Tsutsumida N; Percival J; Murakami D; Yoshida T; Nakaya T
Abstracts of the International Cartographic Association, 巻:1, 開始ページ:1, 終了ページ:2, 2019年07月, [査読有り]
<p><strong>Abstract.</strong> Census data are widely available in many countries and are useful in describing socio-economic structures in a map at an administrative unit level. Multiple variables in census data can be investigated, however, selecting a large number of variables often leads to confusion and makes it difficult to discern which should be considered. Correlation analysis is often applied to measure the degree of association of a pair of variables, while a correlation matrix is used to summarize relationships amongst multiple variables at the same time. Although both provide important metrics, the spatial configuration of the data is not taken into account. For the purpose of mapping, it is often of interest to highlight the correlative relationship between a pair of variables across space in order to deal with any spatial heterogeneity hidden in the data. In this sense, geographically weighted correlation and partial correlation analyses have been proposed to map spatial variations of correlations in a spatial data set. The geographically weighted approach uses a moving-window kernel running across geographical space and calculates a statistical model or summary statistic with distance-decayed weighted data. The critical issue of mapping such correlation relationships amongst multiple variables is the large number of resultant maps produced. If we are interested in correlations amongst 100 variables, the correlation matrix has the dimension of 100 by 100, while 4,950 correlation maps are produced when we investigate local correlation relationships. Furthermore, the degree of scale (localness) which is an important parameter to understand the local correlative relationship should be explored. To this end, the purpose of this study is to build an interactive mapping system for visualizing spatial variations of correlative relationships amongst multivariate variables in big census data. This system is built on Shiny in R and an R package for calculating the geographically weighted correlation and partial correlation coefficients across multiple variables (https://github.com/naru-T/GWpcor) is implemented behind this system for analyses. We use the national census data set for 2005 with 204 variables regarding socio-economic structures in 23 wards in Tokyo with 3,134 administrative units as a case study. The system implements geographically weighted correlation and partial correlation analyses with varying scale parameters and produces an interactive spatial surface of the correlation coefficient. We demonstrate how our interactive mapping system enables users to achieve quick visualization of correlative relationships amongst multivariate census data which can be selected and changed easily from pull-down lists (Figure 1). Such a user-friendly interactive mapping system proposed in this study will help those who need to understand the spatial relationships of the data that is being mapped. This study is supported by ROIS-DS-JOINT (006RP2018).</p>
Copernicus GmbH, 英語, 研究論文(国際会議プロシーディングス)
DOI:https://doi.org/10.5194/ica-abs-1-372-2019
DOI ID:10.5194/ica-abs-1-372-2019, eISSN:2570-2106 - Impact of Soil Reflectance Variation Correction on Woody Cover Estimation in Kruger National Park Using MODIS Data
Sa’ad Ibrahim; Heiko Balzter; Kevin Tansey; Renaud Mathieu; Narumasa Tsutsumida
Remote Sensing, 巻:11, 号:8, 開始ページ:898, 2019年04月, [査読有り]
英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.3390/rs11080898
DOI ID:10.3390/rs11080898, ORCID:161733049 - Mapping spatial accuracy of forest type classification in jaxa's high-resolution land use and land cover map
N. Tsutsumida; S. Nagai; P. Rodríguez-Veiga; J. Katagi; K. Nasahara; T. Tadono
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 巻:4, 号:3, 開始ページ:57, 終了ページ:63, 2019年03月
Accuracy assessment of forest type maps is essential to evaluate the classification of forest ecosystems quantitatively. However, map users do not understand in which regions those forest types are well classified from conventional static accuracy measures. Hence, the objective of this study is to unveil spatial heterogeneities of accuracies of forest type classification in a map. Four forest types (deciduous broadleaf forest (DBF), deciduous needleleaf forest (DNF), evergreen broadleaf forest (EBF), and evergreen needleleaf forest (ENF)) found in the JAXA's land use / cover map of Japan were assessed by a volunteered Site-based dataset for Assessment of Changing LAnd cover by JAXA (SACLAJ). A geographically weighted (GW) correspondence matrix was applied to them to calculate the degree of overall agreements of forest type classes (forest overall accuracy), and the degree of accuracy for each forest class (forest user's and producer's accuracies) in a spatially varying way. This study compared spatial surfaces of these measures with static ones of them. The results show that the forest overall accuracy of the forest map tends to be relatively more accurate in the central Japan, while less in the Kansai and Chubu regions and the northern edge of Hokkaido. Static forest user's accuracy measures for DBF, DNF, and ENF are better than forest producer's accuracy ones, while the GW approach tells us such characteristics vary spatially and some areas have opposite trends. This kind of spatial accuracy assessment provides a more informative description of the accuracy than the simple use of conventional accuracy measures.
Copernicus GmbH, 英語, 研究論文(国際会議プロシーディングス)
DOI:https://doi.org/10.5194/isprs-annals-IV-3-W1-57-2019
DOI ID:10.5194/isprs-annals-IV-3-W1-57-2019, ISSN:2194-9050, SCOPUS ID:85065576788 - Investigating spatial error structures in continuous raster data
Narumasa Tsutsumida; Pedro Rodríguez-Veiga; Paul Harris; Heiko Balzter; Alexis Comber
International Journal of Applied Earth Observation and Geoinformation, 巻:74, 開始ページ:259, 終了ページ:268, 2019年02月, [査読有り]
Elsevier {BV}, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.1016/j.jag.2018.09.020
DOI ID:10.1016/j.jag.2018.09.020, ORCID:48926301 - Mapping spatial accuracy of the forest type classification in JAXA’s high-resolution land use and land cover map
Tsutsumida N; Nagai S; Rodríguez-Veiga P; Katagi J; Nasahara K; Tadono T
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 巻:74, 開始ページ:259, 終了ページ:268, 2019年, [査読有り]
英語, 研究論文(学術雑誌) - Estimating fractional cover of plant functional types in African savannah from harmonic analysis of MODIS time-series data
Sa’ad Ibrahim; Heiko Balzter; Kevin Tansey; Narumasa Tsutsumida; Renaud Mathieu
International Journal of Remote Sensing, 巻:39, 号:9, 開始ページ:2718, 終了ページ:2745, 2018年05月, [査読有り]
Informa {UK} Limited, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.1080/01431161.2018.1430914
DOI ID:10.1080/01431161.2018.1430914, ORCID:41045422 - The Application of a Geographically Weighted Principal Component Analysis for Exploring Twenty-three Years of Goat Population Change across Mongolia
Narumasa Tsutsumida; Paul Harris; Alexis Comber
ANNALS OF THE AMERICAN ASSOCIATION OF GEOGRAPHERS, 巻:107, 号:5, 開始ページ:1060, 終了ページ:1074, 2017年09月, [査読有り]
The dzud are extreme weather events in Mongolia of deep snow, severe cold, or other conditions that render forage unavailable or inaccessible, which in turn results in extensive livestock deaths. Mongolia is economically vulnerable to extreme events due to an increase in nonprofessional herders and the livestock population, brought about by a deregularized industry. Thus, it is hugely informative to try to understand the spatial and temporal trends of livestock population change. To this end, annual livestock census data are exploited and a geographically weighted principal component analysis (GWPCA) is applied to goat data recorded from 1990 to 2012 in 341 regions. This application of GWPCA to temporal data is novel and is able to account for both temporal and spatial patterns in goat population change. Furthermore, the GWPCA methodology is extended to simultaneously optimize the number of components to retain and the kernel bandwidth. In doing so, this study not only advances the GWPCA method but provides a useful insight into the spatiotemporal variations of the Mongolian goat population. ?? ??????????????????????????, ?????????????????, ???????????????????????, ????????????????????????????????????????, ?????????????????, ????????????, ??????????? (GWPCA) ??? 1990 ?? 2012 ??, ?????????????????? GWPCA ?????????????, ?????????????????????????, ???? GWPCA ??, ?????????????????????, ????? GWPCA ??, ??????????????????????? En Mongolia, los dzud son eventos meteorologicos extremos caracterizados por alta precipitacion y acumulacion de nieve, frio severo u otras condiciones que comprometen la disponibilidad de forraje o lo hacen inaccesible, lo cual a su vez resulta en alta mortalidad de ganados. Mongolia es vulnerable economicamente a eventos extremos debido a un incremento de ganaderos no profesionales y de la poblacion ganadera, generados por una industria no regularizada. Entonces, es altamente informativo tratar de entender las tendencias espaciales y temporales del cambio en la poblacion ganadera. Para este fin, se explotan los datos del censo anual de la ganaderia y se aplica un analisis de componentes principales (GWPCA), geograficamente ponderado, a los datos sobre cabras registrados entre 1990 y 2012, en 341 regiones. Esta aplicacion del GWPCA a los datos temporales es novedosa y tiene la capacidad de tomar en cuenta los patrones temporales y espaciales en el cambio de la poblacion de cabras. Aun mas, la metodologia GWPCA se extiende para optimizar simultaneamente el numero de componentes a retener y la anchura de banda del kernel. Al hacerlo, este estudio no solo avanza el metodo GWPCA, sino que provee una perspicacia util en las variaciones espaciotemporales de la poblacion caprina mongola.
ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.1080/24694452.2017.1309968
DOI ID:10.1080/24694452.2017.1309968, ISSN:2469-4452, eISSN:2469-4460, Web of Science ID:WOS:000405403500004 - The late arrival at the Geocomputation party and the need for considered approaches to spatio-temporal analyses
Comber A; Harris P; Tsutsumida N
Geocomputation 2017, 2017年09月, [査読有り]
英語, 研究論文(国際会議プロシーディングス) - Specifying regression models for spatio-temporal data sets
Harris P; Comber A; Tsutsumida N
Geocomputation 2017, 2017年09月, [査読有り]
英語, 研究論文(国際会議プロシーディングス) - Geographically weighted partial correlation for spatial analysis
Percival J; Tsutsumida N
GI_forum Journal, 巻:1, 開始ページ:36, 終了ページ:43, 2017年07月, [査読有り]
英語, 研究論文(学術雑誌) - Spatial accuracy measures of soft classification in land cover
Tsutsumida N; Comber A
Peer-reviewed short paper of the GIScience 2016, 開始ページ:340, 終了ページ:343, 2016年09月, [査読有り]
英語, 研究論文(国際会議プロシーディングス) - Improving land cover classification using input variables derived from a geographically weighted principal components analysis
Alexis J. Comber; Paul Harris; Narumasa Tsutsumida
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 巻:119, 開始ページ:347, 終了ページ:360, 2016年09月, [査読有り]
This study demonstrates the use of a geographically weighted principal components analysis (GWPCA) of remote sensing imagery to improve land cover classification accuracy. A principal components analysis (PCA) is commonly applied in remote sensing but generates global, spatially-invariant results. GWPCA is a local adaptation of PCA that locally transforms the image data, and in doing so, can describe spatial change in the structure of the multi-band imagery, thus directly reflecting that many landscape processes are spatially heterogenic. In this research the GWPCA localised loadings of MODIS data are used as textural inputs, along with GWPCA localised ranked scores and the image bands themselves to three supervised classification algorithms. Using a reference data set for land cover to the west of Jakarta, Indonesia the classification procedure was assessed via training and validation data splits of 80/20, repeated 100 times. For each classification algorithm, the inclusion of the GWPCA loadings data was found to significantly improve classification accuracy. Further, but more moderate improvements in accuracy were found by additionally including GWPCA ranked scores as textural inputs, data that provide information on spatial anomalies in the imagery. The critical importance of considering both spatial structure and spatial anomalies of the imagery in the classification is discussed, together with the transferability of the new method to other studies. Research topics for method refinement are also suggested. (C) 2016 Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
ELSEVIER SCIENCE BV, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.1016/j.isprsjprs.2016.06.014
DOI ID:10.1016/j.isprsjprs.2016.06.014, ISSN:0924-2716, eISSN:1872-8235, Web of Science ID:WOS:000384777300025 - Sub-Pixel Classification of MODIS EVI for Annual Mappings of Impervious Surface Areas
Narumasa Tsutsumida; Alexis Comber; Kirsten Barrett; Izuru Saizen; Ernan Rustiadi
REMOTE SENSING, 巻:8, 号:2, 2016年02月, [査読有り]
Regular monitoring of expanding impervious surfaces areas (ISAs) in urban areas is highly desirable. MODIS data can meet this demand in terms of frequent observations but are lacking in spatial detail, leading to the mixed land cover problem when per-pixel classifications are applied. To overcome this issue, this research develops and applies a spatio-temporal sub-pixel model to estimate ISAs on an annual basis during 2001-2013 in the Jakarta Metropolitan Area, Indonesia. A Random Forest (RF) regression inferred the ISA proportion from annual 23 values of MODIS MOD13Q1 EVI and reference data in which such proportion was visually allocated from very high-resolution images in Google Earth over time at randomly selected locations. Annual maps of ISA proportion were generated and showed an average increase of 30.65 km(2)/year over 13 years. For comparison, a series of RF per-pixel classifications were also developed from the same reference data using a Boolean class constructed from different thresholds of ISA proportion. Results from per-pixel models varied when such thresholds change, suggesting difficulty of estimation of actual ISAs. This research demonstrated the advantages of spatio-temporal sub-pixel analysis for annual ISAs mapping and addresses the problem associated with definitions of thresholds in per-pixel approaches.
MDPI AG, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.3390/rs8020143
DOI ID:10.3390/rs8020143, ISSN:2072-4292, Web of Science ID:WOS:000371898800041 - Spatial analysis of land cover configuration for sustainable water quality management in the Silang-santa Rosa river basin, Laguna, Philippines
Saizen I; Asano S; Tiburan C.L. Jr; Tokito M; Hara Y; Tsutsumida N
37th Asian Conference on Remote Sensing 2016, 2016年
英語, 研究論文(国際会議プロシーディングス) - The detection of increasing vulneravility to flash flood in peri-urban area of Ulaanbaatar, Mongolia through spatial analysis of VHR satellite imageries
Saizen I; Tsutsumida N; Matsuoka M; Ishii R
Asian Conference on Remote Sensing 2015, 2015年10月, [査読有り]
During the last 15 years, the growth of urbanization in Ulaanbaatar, the capital city in Mongolia, has been rapidly accelerated. In a peripheral area of Ulaanbaatar, residential areas called "ger areas" have developed rapidly in an unplanned manner owing to a land reform policy enacted in 2003, which allows Mongolians to have free private land for residential purposes and considerable migration caused by a natural hazard. Mongolia is a mostly arid country where it would be widely unknown that flood was one of the relevant disaster threats. The low precipitation and high evaporation of surface water are a result of the low absorptive capacity of the soil and, accordingly, higher than normal precipitation often results in runoffs, which have the potential to become flash floods. According to the land privatization law in the land reform policy, privatizing lands near water including flood prone areas is not allowed for Mongolian citizens. But in fact, ger areas have been encroaching on flash-flood prone areas. This study clarifies the both direct and indirect factors of ger areas expansion and the actual situation of their spatial distribution over flash-flood prone areas in the peripheral area of Ulaanbaatar using VHR satellite imageries. Those results showed disordered developments of house construction on the flash-flood prone areas spatially. Considering the factors of ger areas formulation based on previous studies and the detected results in this study, it was clarified that residents' first priority in making decision about their living places was not security from hazards but accessibility to urban areas. In addition, this study pointed out the fact that social infrastructure constructions were contributing to the formation of ger areas in flash-flood prone areas. The Mongolian government should not only develop legal systems for ger areas formation but also conduct initial inquiries immediately.
英語, 研究論文(国際会議プロシーディングス)
Scopus:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84964030910&origin=inward
Scopus Citedby:https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84964030910&origin=inward
SCOPUS ID:84964030910 - Measures of spatio-temporal accuracy for time series land cover data
Narumasa Tsutsumida; Alexis J. Comber
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 巻:41, 開始ページ:46, 終了ページ:55, 2015年09月, [査読有り]
Remote sensing is a useful tool for monitoring changes in land cover over time. The accuracy of such time-series analyses has hitherto only been assessed using confusion matrices. The matrix allows global measures of user, producer and overall accuracies to be generated, but lacks consideration of any spatial aspects of accuracy. It is well known that land cover errors are typically spatially auto-correlated and can have a distinct spatial distribution. As yet little work has considered the temporal dimension and investigated the persistence or errors in both geographic and temporal dimensions. Spatio-temporal errors can have a profound impact on both change detection and on environmental monitoring and modelling activities using land cover data. This study investigated methods for describing the spatiotemporal characteristics of classification accuracy. Annual thematic maps were created using a random forest classification of MODIS data over the Jakarta metropolitan areas for the period of 2001-2013. A logistic geographically weighted model was used to estimate annual spatial measures of user, producer and overall accuracies. A principal component analysis was then used to extract summaries of the multitemporal accuracy. The results showed how the spatial distribution of user and producer accuracy varied over space and time, and overall spatial variance was confirmed by the principal component analysis. The results indicated that areas of homogeneous land cover were mapped with relatively high accuracy and low variability, and areas of mixed land cover with the opposite characteristics. A multi-temporal spatial approach to accuracy is shown to provide more informative measures of accuracy, allowing map producers and users to evaluate time series thematic maps more comprehensively than a standard confusion matrix approach. The need to identify suitable properties for a temporal kernel are discussed. (C) 2015 Elsevier B.V. All rights reserved.
ELSEVIER SCIENCE BV, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.1016/j.jag.2015.04.018
DOI ID:10.1016/j.jag.2015.04.018, ISSN:0303-2434, Web of Science ID:WOS:000356996500005 - Addressing urban expansion using feature-oriented spatial data in a peripheral area of Ulaanbaatar, Mongolia
Narumasa Tsutsumida; Izuru Saizen; Masayuki Matsuoka; Reiichiro Ishii
HABITAT INTERNATIONAL, 巻:47, 開始ページ:196, 終了ページ:204, 2015年06月, [査読有り]
Because of the lack of time-series spatial data on urban components, urban expansion in developing countries has usually been studied using a pixel-based approach, despite the coarse spatial resolution associated with this technique. To understand the residential-scale processes involved in urban expansion, we developed feature-oriented GIS data extracted from very high spatial resolution satellite images (IKONOS for 2000 and Quickbird for 2006 and 2008). We selected a fringe area of Ulaanbaatar, the capital municipality of Mongolia, as a case study. Residential plots in this area have developed in an unplanned manner owing to the poor execution of land reform policy. This study facilitated the residential-scale delineation of the significantly expanding area occupied by private land plots in time series. It also permitted the identification of geographical factors driving the expansion. Using a logistic regression model, we found that such expansion is related to social infrastructure rather than to natural landforms. In particular, new plots of private land tended to be built near pre-existing plots and in proximity to roads and water kiosks (which provide essential drinking water for residents). These findings and the probability map predicted by the model have implications for urban planners and decision makers. (C) 2015 Elsevier Ltd. All rights reserved.
PERGAMON-ELSEVIER SCIENCE LTD, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.1016/j.habitatint.2015.01.024
DOI ID:10.1016/j.habitatint.2015.01.024, ISSN:0197-3975, eISSN:1873-5428, Web of Science ID:WOS:000353179200020 - モンゴル国ウランバートル特別行政区の人口集中現象に関する人口移動分析
堤田成政; 西前 出
ESTRELA, 巻:254, 号:254, 開始ページ:36, 終了ページ:41, 2015年05月, [招待有り]
統計情報研究開発センター, 日本語, 研究論文(その他学術会議資料等)
ISSN:1343-5647, CiNii Articles ID:40020461416, CiNii Books ID:AN10464515 - Measures of spatio-temporal accuracy for time series land cover data
Narumasa Tsutsumida; Alexis J. Comber
International Journal of Applied Earth Observation and Geoinformation, 巻:41, 開始ページ:46, 終了ページ:55, 2015年, [査読有り]
Remote sensing is a useful tool for monitoring changes in land cover over time. The accuracy of such time-series analyses has hitherto only been assessed using confusion matrices. The matrix allows global measures of user, producer and overall accuracies to be generated, but lacks consideration of any spatial aspects of accuracy. It is well known that land cover errors are typically spatially auto-correlated and can have a distinct spatial distribution. As yet little work has considered the temporal dimension and investigated the persistence or errors in both geographic and temporal dimensions. Spatio-temporal errors can have a profound impact on both change detection and on environmental monitoring and modelling activities using land cover data. This study investigated methods for describing the spatiotemporal characteristics of classification accuracy. Annual thematic maps were created using a random forest classification of MODIS data over the Jakarta metropolitan areas for the period of 2001-2013. A logistic geographically weighted model was used to estimate annual spatial measures of user, producer and overall accuracies. A principal component analysis was then used to extract summaries of the multitemporal accuracy. The results showed how the spatial distribution of user and producer accuracy varied over space and time, and overall spatial variance was confirmed by the principal component analysis. The results indicated that areas of homogeneous land cover were mapped with relatively high accuracy and low variability, and areas of mixed land cover with the opposite characteristics. A multi-temporal spatial approach to accuracy is shown to provide more informative measures of accuracy, allowing map producers and users to evaluate time series thematic maps more comprehensively than a standard confusion matrix approach. The need to identify suitable properties for a temporal kernel are discussed.
Elsevier B.V., 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.1016/j.jag.2015.04.018
DOI ID:10.1016/j.jag.2015.04.018, ISSN:1872-826X, SCOPUS ID:84943598001 - Detection of Spatial Clusters of Flood- and Landslide- Prone Areas using Local Moran Index in Jabodetabek Metropolitan Area, Indonesia
Pravitasari A. E; Saizen I; Tsutsumida N; Rustiadi E
International Journal of Ecology and Environmental Sciences, 2015年, [査読有り]
英語, 研究論文(学術雑誌) - Local spatially dependent driving forces of urban expansion in an emerging Asian megacity: The case of Greater Jakarta (Jabodetabek)
Andrea Emma Pravitasari; Izuru Saizen; Narumasa Tsutsumida; Ernan Rustiadi; Didit Okta Pribadi
Journal of Sustainable Development, 巻:8, 号:1, 開始ページ:108, 終了ページ:119, 2015年, [査読有り]
Urban expansion and urbanization have been continuing to grow rapidly, especially in Asian megacities. Greater Jakarta (Jabodetabek) has emerged as the world's second largest urban area, with a population of 28 million in 2010, where urban expansion has a significant impact on the local as well as the global environment. Efforts to control urban expansion must start from a clear understanding of its various driving forces at a local, regional, and global level. Studies of the interdependencies between these driving forces in the local spatial relationships in emerging Asian megacities remain limited. This study explores the driving forces of urban expansion in Jabodetabek by considering local spatial dependency and analyzes the spatial characteristics of this urbanized area as well as identifies spatial variations in the relationship between urban expansion and its driving forces by using Geographically Weighted Regression. The presented findings show that the driving forces affecting urban expansion in the Jabodetabek region vary spatially. Owing to the influence of the global and regional economies on Jabodetabek, we find that the demographic, infrastructural, and natural elements driving forces significantly affect urban expansion in this region according to location. Outside the core of this megacity, urban expansion in most areas is significantly affected by local demographic as well as infrastructural driving forces. Jakarta city, as the core of the Jabodetabek megacity, is becoming independent of these local driving forces, however, since it is now more characterized as a global city and thus tending to have more linkages with the world market.
Canadian Center of Science and Education, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.5539/jsd.v8n1p108
DOI ID:10.5539/jsd.v8n1p108, ISSN:1913-9063, SCOPUS ID:84924434517 - The Impact of Agricultural Expansion on Forest Cover in Ratanakiri Province, Cambodia
Sanara Hor; Izuru Saizen; Narumasa Tsutsumida; Tsugihiro Watanabe; Shintaro Kobayashi
Journal of Agricultural Science, 巻:6, 号:9, 開始ページ:46, 終了ページ:59, 2014年08月, [査読有り]
Canadian Center of Science and Education, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.5539/jas.v6n9p46
DOI ID:10.5539/jas.v6n9p46, ORCID:32256655 - Internal Regional Migration Analysis and Modeling of Population Concentration for Ulaanbaatar, Mongolia
Tsutsumida N; Saizen I
Papers on Environmental Information Science, 巻:28, 開始ページ:25, 終了ページ:30, 2014年, [査読有り]
モンゴル国では首都ウランバートル(UB)への人口集中が進み,都市域の拡大をはじめとする都市問題が喫緊の課題となっている。本研究では,UB への人口集中プロセスの解明を目的とし,2005-2011 年の人口移動データならびに各種統計データを用いて移動選択指数の算出・重回帰分析を実施した。 移動選好指数からは期待値を上回るUB への人口移動が恒常的にみられることを明らかにし,重回帰分析からはUB への移住が賃金と正の関係を、また失業者数とUB への距離が負の関係を有することが明らかになった。また,2009~2010 年に発生したゾドと呼ばれる自然災害が発生した時期には家畜の高死亡数も影響を与えていることが示唆された。
一般社団法人環境情報科学センター, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.11492/ceispapers.ceis28.0_25
DOI ID:10.11492/ceispapers.ceis28.0_25, ISSN:0389-6633, CiNii Articles ID:130005162741 - Land Cover Change Detection in Ulaanbaatar Using the Breaks for Additive Seasonal and Trend Method
Tsutsumida N; Saizen I; Matsuoka M; Ishii R
Land, 巻:2, 号:4, 開始ページ:534, 終了ページ:549, 2013年, [査読有り]
MDPI AG, 英語, 研究論文(学術雑誌)
DOI:https://doi.org/10.3390/land2040534
DOI ID:10.3390/land2040534, eISSN:2073-445X - NDVIを用いたウランバートルにおける植生変動の空間解析
堤田成政; 西前出; 小林愼太郎
環境情報科学, 開始ページ:369, 終了ページ:374, 2012年11月, [査読有り]
日本語
J-Global ID:201302234728894380, CiNii Articles ID:40019554804 - ソーシャル・キャピタルの空間的自己相関を規定する関連因子の特定 : 京都府北部の445農業集落の全世帯を対象とした質問紙調査を通して
福島 慎太郎; 堤田 成政; 西前 出
環境情報科学学術研究論文集 = Papers on environmental information science, 巻:26, 号:26, 開始ページ:171, 終了ページ:176, 2012年, [査読有り]
本研究は,モランのI 統計量を用いて,1)結合型のコミュニティ信頼と橋渡し型の一般的信頼には,隣接集落間で範域としての境界の明瞭性や曖昧性は検出されるか,2)これら2 つの形態の信頼の境界の明瞭性や曖昧性を生み出す関連因子は何か,という2 つの課題に対して検証を行うことを目的とした。分析で用いたデータは,2006 年に京都府北部の3 自治体の全農村地域に実施した質問紙調査で得られた。分析の結果,1)コミュニティ信頼においては隣接集落間における信頼水準の境界の曖昧性が確認された一方で,一般的信頼においては境界の明瞭性や曖昧性が検証されなかった。2)コミュニティ信頼の境界の曖昧性と関連を有しているのは「世帯密度」「居住年数」「世帯人数」であった。3)コミュニティ信頼と一般的信頼の隣接集落間の境界の曖昧性や連続性は相互に関連していた。
一般社団法人環境情報科学センター, 日本語
DOI:https://doi.org/10.11492/ceispapers.ceis26.0_171
DOI ID:10.11492/ceispapers.ceis26.0_171, ISSN:0389-6633, CiNii Articles ID:40019551192
- 地理的加重法による空間内挿
堤田 成政
ESTRELA, 巻:34, 開始ページ:14, 終了ページ:19, 2022年, [招待有り], [筆頭著者]
日本語, 記事・総説・解説・論説等(商業誌、新聞、ウェブメディア) - 再現可能性を重視したオンラインでのジオコンピュテーション教育
堤田成政
GIS -理論と応用, 巻:29, 号:2, 開始ページ:59, 終了ページ:64, 2022年, [筆頭著者, 最終著者, 責任著者]
日本語, 記事・総説・解説・論説等(学術雑誌) - 疎なカウントデータのための地理的加重ポアソン回帰の安定化・高速化
村上大輔; 堤田 成政; 吉田 崇紘; 中谷 友樹
地理情報システム学会第30回学術研究発表大会, 2021年
日本語, 研究発表ペーパー・要旨(全国大会,その他学術会議) - カーネルの重みをスパース推定する新たな地理加重回帰の提案
堤田 成政; 村上大輔; 吉田 崇紘; 中谷 友樹
地理情報システム学会第30回学術研究発表大会, 2021年, [筆頭著者]
日本語, 研究発表ペーパー・要旨(全国大会,その他学術会議) - Impact of COVID-19 Outbreak on Air Quality in Thailand
Thongrueang N; Nakaya T; Tsutsumida N
地理情報システム学会第30回学術研究発表大会, 2021年
英語, 研究発表ペーパー・要旨(全国大会,その他学術会議) - 定数和制約と誤差相関を考慮した組成データのための地理的加重回帰
吉田 崇紘; 村上大輔; 瀬谷創; 堤田 成政; 中谷 友樹
地理情報システム学会第30回学術研究発表大会, 2021年
日本語, 研究発表ペーパー・要旨(全国大会,その他学術会議) - Geographically weighted regression for compositional data: An application to land use analysis
Yoshida T.; Murakami D.; Tsutsumida N.; Nakaya T.; Tsutsumi M.
The XIV World Conference of the Spatial Econometrics Association 2020, 2020年11月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - 分類結果比較法による土地被覆・土地利用変化抽出の課題
堤田成政
農村計画学会誌, 巻:39, 号:3, 開始ページ:286, 終了ページ:289, 2020年, [招待有り], [筆頭著者, 最終著者, 責任著者]
日本語, 記事・総説・解説・論説等(学術雑誌) - 組成データのための地理的加重回帰モデル
吉田崇紘; 村上大輔; 瀬谷創; 堤田成政; 中谷友樹; 堤盛人
地理情報システム学会講演論文集, 巻:28, 2020年, [招待有り]
日本語, 研究発表ペーパー・要旨(全国大会,その他学術会議) - The 3rd International Conference of AGLE – IGU 2019
Stanny A.Y; Saizen I; Tsutsumida N; Barus B; Pravitasari A.E
The 3rd International Conference of AGLE – IGU 2019, 2019年10月
英語, 研究発表ペーパー・要旨(国際会議) - Spatial analysis of land cover fraction and land surface temperature in Jakarta, Indonesia
Utami N.P; Tsutsumida N
the International Association of Geo-informatics (IAG'i), 巻:28, 2019年10月
英語, 研究発表ペーパー・要旨(国際会議) - Exploring spatial scale by interactive map for geographically weighted correlation
Percival J; Tsutsumida N; Murakami D; Yoshida T; Nakaya T
the International Association of Geo-informatics (IAG'i), 巻:28, 2019年10月
英語, 研究発表ペーパー・要旨(国際会議) - Changes in built-up areas and population in a typical mountainous region—a case study of Liping county, southwest China
Zhao J; Tsutsumida N
the International Association of Geo-informatics (IAG'i), 巻:28, 2019年10月
英語, 研究発表ペーパー・要旨(国際会議) - Machine learning of spatiotemporal processes: investigating livestock changes in Mongolia with LSTM recurrent neural networks
Comber A; Heppenstall A; Takahashi T; Tsutsumida N; Harris P
Accepted Short Papers and Posters from the 22nd AGILE Conference on Geo-information Science, 2019年, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - Scalable GWR: A linear-time algorithm for large-scale geographically weighted regression with polynomial kernels
Murakami D; Tsutsumida N; Yoshida T; Nakaya T; Lu B
arXiv preprint, 2019年
英語, 機関テクニカルレポート,技術報告書,プレプリント等 - 連続値土地被覆データの空間誤差
堤田 成政
日本リモートセンシング学会第65回学術講演会論文集, 開始ページ:23, 終了ページ:24, 2018年11月
日本語, 研究発表ペーパー・要旨(全国大会,その他学術会議) - 空間統計データによる総合指標作成のための地理的加重非負値主成分分析の検討
堤田成政; 村上大輔; 吉田崇紘; 中谷友樹
地理情報システム学会講演論文集, 巻:27, 2018年10月
日本語, 研究発表ペーパー・要旨(全国大会,その他学術会議) - 大規模データのための地理的加重回帰と住宅地価分析への応用
村上大輔; 堤田成政; 吉田崇紘; 中谷友樹
地理情報システム学会講演論文集, 巻:27, 2018年10月
日本語, 研究発表ペーパー・要旨(全国大会,その他学術会議) - Spatially varying coefficient modeling for large data: Application for land price analysis in Tokyo
Murakami D; Nakaya T; Tsutsumida N; Yoshida T
International Conference on Spatial Analysis and Modeling, 2018年09月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - Spatially explicit exploratory factor analysis on urban statistical data – Geographically weighted approach –
Tsutsumida N; Murakami D; Yoshida T; Pravitasari A.E; Nakaya T
International Conference on Spatial Analysis and Modeling, 2018年09月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - 格子データにおける精度評価指標の空間拡張
堤田 成政
日本地理学会2018年春季学術大会発表要旨集, 2018年03月
日本語, 速報,短報,研究ノート等(大学,研究機関紀要) - Geographically Weighted Principal Component Analysis for Spatio-temporal Statistical Dataset
Tsutsumida N; Harris P; Comber A
Abstract for IASC-ARS/NZSA 2017, 2017年12月, [査読有り]
英語, 記事・総説・解説・論説等(国際会議プロシーディングズ) - Exploring spatially explicit relation amongst land surface phenology and geographic data at a global scale by geographically weighted approach
Tsutsumida N; Percival J
Abstract for Statistics in Ecology and Environmental Monitoring 2017, 2017年12月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - JAXA高解像度土地利用土地被覆図の分類精度の空間分布推定
堤田 成政; 奈佐原; 西田; 顕郎; 田殿武雄
日本リモートセンシング学会第63回学術講演会論文集, 巻:63rd, 開始ページ:37, 終了ページ:39, 2017年11月
日本語, 研究発表ペーパー・要旨(全国大会,その他学術会議)
J-Global ID:201802265684825950 - The importance of habitat connectivity and structure on fish biodiversity and assemblages within Samoan mangroves
Joseph Percival; Kiran Liversage; Narumasa Tsutsumida; Rebecca Stirnemann; Schannel van Dijken; Edouard Lavergne
The 10th Indo-Pacific fish conference, 2017年10月, [査読有り]
英語, 記事・総説・解説・論説等(国際会議プロシーディングズ) - Spatial considerations of accuracy for satellite-based biomass mapping
Tsutsumida N; Rodríguez-Veiga P; Harris P; Comber A; Percival J
RSPsoc, 2017年09月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - Mapping of mangrove ecosystems using a UAV with a simple RGB sensor
Percival J; Tsutsumida N
RSPsoc, 2017年09月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - Spatial correlation for phenological responses to climate
Percival J; Tsutsumida N
JpGU-AGU Joint Meeting 2017, 2017年05月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - Long-term monitoring of land surface phenological changes
Tsutsumida N; Kaduk J
JpGU-AGU Joint Meeting 2017, 2017年05月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - Impact of spatial scale for phenological indices derived from remotely sensed data
Tsutsumida N; Kaduk J
JpGU-AGU Joint Meeting 2017, 2017年05月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - Afforestation monitoring using long-term remotely sensed data in Chinese semi-arid area
Hara Y; Tsutsumida N; Saizen I
JpGU-AGU Joint Meeting 2017, 2017年05月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - Impacts of changes in phenology on land-atmosphere interactions in temperate and boreal regions
Kaduk J.D; Barrett K; De Mendoza; Rosales A. H; Tsutsumida N
JpGU-AGU Joint Meeting 2017, 2017年05月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - 1982-2015年の全球土地被覆の変遷
堤田 成政
日本地理学会2017年春季学術大会, 巻:2017, 開始ページ:100335, 終了ページ:100335, 2017年03月
気候変動モデルや生物多様性の推定などに不可欠な土地被覆情報であるが,長期変動が起こりうるにもかかわらず,時間軸に着目した高精度の時空間データの構築は容易ではない。近年では単一クラス型の土地被覆図(森林図、水域図など)の開発が盛んである一方で、複合クラス型の土地被覆図は分類精度がおよそ60~80% (Overall accuracy)と高くなく,多くの誤差が含まれている場合が多い。そこで本研究では, マクロな植生変動や生態系サービス評価など様々な研究領域で応用されるGIMMS NDVI3gデータ(バージョン1)をもちい,過去34年間(1982−2015年)の全球土地被覆図を1年毎に作成し,その変遷を明らかにすることを目的とする。
公益社団法人 日本地理学会, 日本語, 研究発表ペーパー・要旨(全国大会,その他学術会議)
DOI:https://doi.org/10.14866/ajg.2017s.0_100335
DOI ID:10.14866/ajg.2017s.0_100335, CiNii Articles ID:130005635795 - Monitoring Urban Land Use Change in the Southwestern Portion of Laguna Lake, Philippines
Tiburan C; Saizen I; Tsutsumida N
International Symposium on Global Environmental Studies Education and Research in Asia, 2016年11月
英語, 研究発表ペーパー・要旨(国際会議) - 月平均気温・降水量の空間相関分布とその季節性
堤田 成政; Percival Joseph
CSIS DAYS 2016 研究アブストラクト集, 開始ページ:6, 2016年11月
日本語, 研究発表ペーパー・要旨(全国大会,その他学術会議) - Fractional Land Cover Dynamics during 1983-2012 using GIMMS NDVI3g
Tsutsumida N; Balzter H; Barrett K; Harris P; ComberA; Padilla-Parellada M; Rodriguez-Veiga P; Tansey K; Tate N; Saizen I; Shinjo H
RSPSoc Annual Conference 2016, 2016年09月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - Spatial accuracy assessment of soft classification land cover map
Tsutsumida N
Jpgu, 2016年05月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - The impacts of imperfect reference data on land cover classification accuracy
Tsutsumida N; Comber A
RSPSoc, NCEO and CEOI-ST Joint Annual Conference 2015, 2015年09月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - A study on the sustainability of a ethnic minoritiy's livelihood from the viewpoints of the carrying capacity of land -a case of a hamlet in Nam Dong district, Vietnam-
Saizen I; Tokito M; Morikawa S; Imura M; Asano S; Tsutsumida N; Tran TD; Le VA
The 3rd International Symposium on Formulation of the cooperation hub for Global Environmental Studies in Indochina Region, 2015年07月
英語, 研究発表ペーパー・要旨(国際会議) - The use of geographically weighted PCA to classify land cover from multispectral image data.
Harris P; Tsutsumida N; Comber A.J
The 36th International Symposium on Remote Sensing of Environment, 2015年05月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - Harmonic analysis of desertification processes measured by vegetation greenness data from GIMMS3g NDVI
Tsutsumida N; Balzter H
JpGU, 2015年05月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - Internal Regional Migration Analysis and Modeling of Population Concentration for Ulaanbaatar
N. Tsutsumida; I. Saizen
28th conference of Environmental Information Science, 2014年12月
英語, 研究発表ペーパー・要旨(全国大会,その他学術会議)
DOI:https://doi.org/10.11492/ceispapers.ceis28.0_25
DOI ID:10.11492/ceispapers.ceis28.0_25 - A time series analysis of land cover change: random forest models of annual changes in urban land cover
N. Tsutsumida; A. J. Comber; K. Barrett; I. Saizen
GIScience 2014, 開始ページ:446, 終了ページ:449, 2014年09月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - Urban development vs environmental degradation in JABODETABEK region, Indonesia: Investigating Spatial Distribution Pattern of Floods and Landslides using Local Moran Index
A.E. Pravitasari; I. Saizen; N. Tsutsumida; E. Rustiadi
10th World Congress of the RSAI, virtual conference, 2014年05月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - Land Use Changes in Northeastern Cambodia: Local Practice and Policy Response
H. Sanara; K. Mizuno; S. Kobayashi; T. Watanabe; I. Saizen; N. Tsutsumida
Japanese society of regional and agricultural development 2013 Autumn Conference, 2013年11月
英語, 研究発表ペーパー・要旨(全国大会,その他学術会議) - Exploring the Driving Forces of Land-Cover Change Behind Urban Expansion in Jabodetabek, Indonesia.
Pravitasari A.E; Saizen I; Tsutsumida N; Watanabe T; Rustiadi E
2013年10月, [査読有り]
英語 - Spatial Detection of Vegetation Biomass/Cover Changes using NDVI Time Series in Ulaanbaatar, Mongolia
Tsutsumida N; Saizen I
4th Jabodetabek Study Forum Seminar- Resilient Megacities: Idea, Reality, and Movement-, 2013年10月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - Time-spatial analysis of in-migration to Ulaanbaatar, Mongolia
N. Tsutsumida; I. Saizen; A. Amarbal; A. Otomo
The 15th Korea & Japan International Symposium on GIS, 2013年10月
英語, 研究発表ペーパー・要旨(国際会議) - Land Cover Assessment in Mongolia by Principal Component Analysis of Phonological Parameters using MODIS Imagery.
Tsutsumida N; Saizen I
American Society of Photogrammetry and Remote Sensing (ASPRS) 2013 Aunnual Conference, 2013年03月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - モンゴル国における植生変動の空間分析
堤田成政; 西前 出; 小林愼太郎
農業農村工学会京都支部第69回研究発表会講演要旨集, pp.220-221, 2012年11月
日本語, 研究発表ペーパー・要旨(全国大会,その他学術会議) - Land use planning and remote sensing analysis.
Saizen I; Tsutsumida N
Japan Special Session: Bilateral Collaboration on Disaster Risk Reduction, 2012年10月, [招待有り]
英語, 研究発表ペーパー・要旨(国際会議) - GIS-based Analysis of Private Lands Expansion using High-resolution Satellite Imagery in Ulaanbaatar, Mongolia
Tsutsumida N; Saizen I; Matsuoka M; Ishii R
International Conference on Future Environment and Energy (ICFEE), 2012年03月, [査読有り]
英語, 研究発表ペーパー・要旨(国際会議) - 高解像度衛星画像を用いたウランバートルのスプロール現象の空間的把握と地理的立地特性
堤田成政; 西前 出; 小林愼太郎
環境研究発表会ポスターセッション, 2011年11月
日本語, 研究発表ペーパー・要旨(全国大会,その他学術会議) - Future collaborative studies of urban sprawl and linkage to rural areas in Channai
Saizen I; Tsutsumida N
2011年08月, [査読有り]
英語
- Land Use Management in Disaster Risk Reduction
Banba M; Shaw R, [分担執筆], The rapid development of settlements in flood-prone areas in peri-urban Ulaanbaatar, Mongolia: Monitoring and spatial analysis using VHR satellite imageries
Springer, 2017年11月 - Towards FUTURE EARTH: Challenges and Progress of Global Environmental Studies
Katsumi T; Hashimoto S, [分担執筆], Challenges in Spatio-Temporal Land Cover Classification and its Accuracy Assessment
Kaisei Publishing, 2016年03月 - モンゴル 草原生態系ネットワークの崩壊と再生
藤田昇; 加藤聡史; 草野栄一; 幸田良介, 土地私有化政策と首都のスプロール現象
京都大学学術出版会, 2013年10月
日本語, 学術書 - Collapse of Restoration of Ecosystem Networks with Human Activity.
Sakai S; R. Ishii; N. Yamamura, [分担執筆], Time-series Analysis of Private Land Expansion in a Peri-urban Area of Ulaanbaatar, Mongolia
Research Institute for Humanity and Nature, 2013年03月
英語, 担当ページ:83- 89 - Land privatization and its spatial expansion
Batjargal Z; Fujita N; Yamamura N, [分担執筆], 372-379
ADMON, 2012年
- Adjustment of Satellite LiDAR Footprint Location Using Genetic Algorithm
Tsutsumida N.
ISRSE40, 2025年03月
ポスター発表 - Advancing Street-Level Image Management by landlensdb
Percival J.; Tsutsumida N.
ISRSE40, 2025年03月
口頭発表(一般) - Reduction of Snow Contamination in Himawari-8/-9 AHI NDVI for Imoroved Phenology Monitoring
Miura T.; Yamamoto Y.; Shin N.; Tsutsumida N.; Ichii K.
第27回CEReS環境リモートセンシングシンポジウム, 2025年02月
口頭発表(一般) - 衛星Lidarフットプリントの位置補正手法の開発
堤田成政
第27回CEReS環境リモートセンシングシンポジウム, 2025年02月
ポスター発表 - Spatial Analysis of Errors in Fractional Land Cover Classification
Tsutsumida N.; Yoshida T.; Murakami D.; Nakaya T.; Comber A.
AGU Annual Meeting 2024, 2024年12月
ポスター発表 - Utilizing Socially Sensed Images for Monitoring Local Landscapes
Tsutsumida N.
AGU Annual Meeting 2024, 2024年12月
ポスター発表 - Enhanced Flood Mapping Using Combined SAR and Multi-Spectral Sensor Data with a Transformer-Based Dual Encoders Model
Tanaka T.; Tsutsumida N.
AGU Annual Meeting 2024, 2024年12月
口頭発表(一般) - SAR・マルチスペクトル衛星観測データの融合モデルによる洪水浸水域推定手法の提案
田中智大; 堤田成政
CSIS DAYS2024, 2024年11月
口頭発表(一般) - 日本におけるウミネコの生息地分布の将来予測
張 園苡; 堤田 成政
CSIS DAYS2024, 2024年11月
口頭発表(一般) - 埼玉県さいたま市における建物ごとのCO2排出量の推定
村上 拓; 堤田 成政; 吉田 崇紘
CSIS DAYS2024, 2024年11月
口頭発表(一般) - 人工衛星観測データをもちいた洪水浸水域推定,
堤田成政
埼玉大学産学官連携協議会防災DX研究会, 2024年11月, [招待有り]
公開講演,セミナー,チュートリアル,講習,講義等 - 車載カメラからランドスケープの変化を検出する
堤田成政
埼玉大学第25回埼玉大学産学交流会テクノカフェ, 2024年10月, [招待有り]
公開講演,セミナー,チュートリアル,講習,講義等 - 空間予測のためのモラン固有ベクトルに基づく空間組成回帰モデル
吉田崇紘; 村上大輔; 堤田成政
第33回地理情報システム学会 学術研究発表大会予稿集, 2024年10月
口頭発表(一般) - 高速で柔軟な非ガウス時空間可変パラメータモデルとRへの実装
村上大輔; 吉田崇紘; 堤田成政; 中谷友樹
第33回地理情報システム学会 学術研究発表大会予稿集, 2024年10月
口頭発表(一般) - 土地被覆ソフト分類における空間誤差評価手法の提案
堤田成政; 吉田崇紘; 村上大輔; 中谷友樹
第33回地理情報システム学会 学術研究発表大会, 2024年10月
口頭発表(一般) - Mapping of Forest Structural Patterns by GEDI, Sentinel-1 and 2
Tsutsumida N.; Kato A.; Osawa T.; Doi H.
ForestSAT2024, 2024年09月
口頭発表(一般) - マルチリモートセンシングによる土地被覆研究
堤田成政
令和6年度第二回GIS基礎技術研究会,, 2024年07月, [招待有り]
公開講演,セミナー,チュートリアル,講習,講義等 - A machine learning approach for reliable near-real-time prediction of solar irradiance from geostationary satellite imagery
Sultana Nima N.; Tsutsumida N.
JpGU 2024, 2024年05月
口頭発表(一般) - A Self-Supervised Learning framework for Rapid Estimation of Flood Inundation Area Using Multi-Source Remote Sensing Data
Tanaka T.; Tsutsumida N.
JpGU 2024, 2024年05月
ポスター発表 - Street-level imageを活用した地域環境モニタリング
堤田成政
大阪府立環境農林水産総合研究所セミナー, 2024年05月, [招待有り]
公開講演,セミナー,チュートリアル,講習,講義等 - ドローンレーザーを用いた森林内空隙解析
加藤顕; 鈴木智; 早川裕弌; 中田 敏是; 堤田成政; 笠井美青
第71回日本生態学会大会, 2024年03月
2024年03月 - 2024年03月, 日本語, 口頭発表(一般) - ソーシャルセンシングによる桜開花フェノロジー
堤田成政
第71回日本生態学会大会, 2024年03月
2024年03月 - 2024年03月, 日本語, 口頭発表(一般) - Utilizing geostationary satellite data for ultra-short-term forecasting of solar irradiance by a multivariate Long-Short-Term Memory Recurrent Neural Network
Nifat Sultana; Narumasa Tsutsumida
The 26th CEReS Environmental Remote Sensing Symposium, 2024年02月
2024年02月 - 2024年02月, 英語, ポスター発表 - Snow detection in Himawari-8 Advanced Himawari Imager NDVI for improved autumn phenology monitoring
Miura T; Yamamoto Y; Nagai S; Tsutsumda N; Ichii K
AGU Annual Meeting 2023, 2023年12月
英語, ポスター発表 - Enhancing Land Cover Classification Mapping with Dynamic World and Decision Fusion
Tsutsumida N; Nasahara K; Tadono T
AGU Annual Meeting 2023, 2023年12月
英語, ポスター発表 - Sub-model aggregationによる地理的加重回帰の安定化・高速化
村上大輔 , 堤田 成政, 吉田 崇紘, 中谷 友樹
第32回地理情報システム学会 学術研究発表大会, 2023年10月
口頭発表(一般) - 総合指標作成のためのSpatially Hierarchical Benefit of the Doubt (SH-BoD)の提案
堤田成政; 村上大輔; 吉田崇紘; 中谷友樹
第32回地理情報システム学会 学術研究発表大会, 2023年10月
口頭発表(一般) - 大学・大学院でのジオデータサイエンス教育の実践
堤田成政
第32回地理情報システム学会 学術研究発表大会 教育委員会企画ミニシンポジウム「教育におけるデータサイエンスと地理情報:実践と課題」, 2023年10月, [招待有り]
シンポジウム・ワークショップパネル(指名) - パノプティックシーングラフによる土地被覆オブジェクト間の関係性抽出
渋谷南帆; 堤田成政
第32回地理情報システム学会 学術研究発表大会 学生フリーテーマ発表会 成果発表セッション, 2023年10月
日本語, 口頭発表(一般) - 1kmメッシュ別滞在人口データを用いた時系列パターン分類手法の開発
黄晨安; 堤田 成政
第32回地理情報システム学会 学術研究発表大会, 2023年10月
口頭発表(一般) - Issues in land cover classification from remotely sensed imagery
Narumasa Tsutsumida
Urban design and modeling for sustainable and smart urban communities , Tokyo: 2023 Summer International Smart City Workshop, school of City and Regional Planning and School of Architecture, College of Design, Georgia Institute of Technology Center for Spatial Information Science and Department of Urban Engineering, the University of Tokyo, 2023年06月, [招待有り]
公開講演,セミナー,チュートリアル,講習,講義等 - 1 kmメッシュ別滞在人口データを用いたコロナ禍における都市人口の時空間分析
黄 晨安; 堤田 成政
JpGU2023, 2023年05月
ポスター発表 - Detecting Snow Contaminations in Advanced Himawari Imager NDVI Time Series Data for Improved Autumn Phenology Characterization,
Tomoaki Miura; Nagai Shin; Yuhei Yamamoto; Narumasa Tsutsumida; Kazuhito Ichii
JpGU2023, 2023年05月
口頭発表(一般) - 探索的空間データ解析のためのインタラクティブ空間相関マッピング
堤田成政; Joseph Percival; 吉田崇紘; 村上大輔; 中谷友樹
CSIS DAYS202, 2022年11月
シンポジウム・ワークショップパネル(公募) - Uncertain Vegetation Trends by Index Selections
Tsutsumida N; Mochizuki R
2022 Geo for Good Summit, 2022年10月
ポスター発表 - Aboveground Woody Biomass Dynamics in the African Continent
Rodriguez-Veiga, Pedro; Carreiras, Joao; Quegan, Shaun; Heiskanen, Janne; Pellikka, Petri; Adhikari, Hari; Araza, Arnan; Herold, Martin; Smallman, Thomas Luke; Williams, Mathew; Ryan, Casey; Brade, Thom; Nwobi, Chukwuebuka; Tsutusmida, Narumasa; Cartus, Oliver; Santoro, Maurizio; Balzter, Heiko
UK EO 2022, 2022年09月
2022年09月 - 2022年09月, 英語, 口頭発表(一般) - Analysing Aboveground Woody Biomass Dynamics in Africa
Rodriguez-Veiga, Pedro; Carreiras, Joao; Quegan, Shaun; Heiskanen, Janne; Pellikka, Petri; Adhikari, Hari; Araza, Arnan; Herold, Martin; Smallman, Thomas Luke; Williams, Mathew; Ryan, Casey; Brade, Thom; Nwobi, Chukwuebuka; Tsutusmida, Narumasa; Cartus, Oliver; Santoro, Maurizio; Balzter, Heiko
ForestSAT 2022, 2022年09月
2022年08月 - 2022年09月, 英語, 口頭発表(一般) - A Decade of Aboveground Woody Biomass Dynamics in the African Continent
Pedro Rodríguez-Veiga; Joao Carreiras; Shaun Quegan; Janne Heiskanen; Petri Pellikka; Hari Adhikari; Arnan Araza; Thomas Luke Smallman; Mathew Williams; Ebuka Nwobi; Narumasa Tsutsumida; Heiko Balzter
Living Planet Symposium 2022, 2022年05月
2022年05月 - 2022年05月, 英語, 口頭発表(一般) - ⾞載カメラ画像を⽤いた桜開花マッピング
舟田宗弥; 堤田 成政
第69回日本生態学会大会, 2022年03月
日本語, ポスター発表 - Estimating Land Cover from Geo-tagged Street-level Photos
Tsutsumida N; Zhao J; Nasahara K; Tadono T
AGU Fall meeting 2021, 2021年12月
英語, ポスター発表 - 土地被覆分類データの空間精度・空間誤差
堤田成政
第109回日本写真測量学会関西支部テクニカルセミナー, 2021年10月, [招待有り]
日本語, 公開講演,セミナー,チュートリアル,講習,講義等 - Himawari-8 AHI NDVI Temporal Signature Variability of Broadleaf Deciduous Forests Along Temperature, Elevation, and Latitudinal Gradients in Northern Japan
Miura T; Nagai S; Tsutsumida N; Yamamoto Y
jpGU, 2021年05月
英語, 口頭発表(一般) - 地理的加重モデルの開発と空間データ解析
堤田成政
ROIS-DS 成果報告会, 2021年02月, [招待有り]
日本語, シンポジウム・ワークショップパネル(指名) - 1982 年以降の土地被覆変動解析
堤田成政
第 23回 千葉大学環境リモートセンシングシンポジウム, 2021年02月
日本語, ポスター発表 - Geographically weighted regression for compositional data,
Yoshida T; Murakami D; Seya H; Tsutsumida N; Nakaya T
Data Science Workshop, Center for Data Science and Service Research, Tohoku University, 2021年01月, [招待有り]
公開講演,セミナー,チュートリアル,講習,講義等 - Mapillaryデータから土地被覆を識別することは可能か?
堤田成政
第67回日本生態学会, 2020年03月
2020年03月 - 2020年03月, 日本語, ポスター発表 - 土地被覆比率分類データにおける空間誤差評価
堤田成政
第 22回 環境リモートセンシングシンポジウム, 2020年02月
2020年02月 - 2020年02月, 日本語, ポスター発表 - Spatial heterogeneity of errors in land cover data
Tsutsumida N.
Model spatial heterogeneity in environmental and ecological processes, RIMS TBMA XVI, 2020年01月, [招待有り]
公開講演,セミナー,チュートリアル,講習,講義等 - Exploring spatial scale by interactive map for geographically weighted correlation
Percival J; Tsutsumida N; Murakami D; Yoshida T; Nakaya T
the International Association of Geo-informatics (IAG'i), 2019年10月, [国際会議]
英語, 口頭発表(一般) - Spatial analysis of land cover fraction and land surface temperature in Jakarta, Indonesia
Utami N.P; Tsutsumida N
the International Association of Geo-informatics (IAG'i), 2019年10月, [国際会議]
英語, ポスター発表 - Changes in built-up areas and population in a typical mountainous region—a case study of Liping county, southwest China
Zhao J; Tsutsumida N
the International Association of Geo-informatics (IAG'i), 2019年10月, [国際会議]
英語, ポスター発表 - Interactive mapping for geographically weighted correlation in big census data
Tsutsumida N; Percival J; Murakami D; Yoshida T; Nakaya T
FOSS4G 2019 KANSAI.KOBE, 2019年10月, [国内会議]
英語, ポスター発表 - Development of a geocomputation tool using publicly open data
Narumasa Tsutsumida
“Kyoto & G0v” Meetup about Open Governance, 2019年08月, [招待有り], [国際会議]
英語, 公開講演,セミナー,チュートリアル,講習,講義等 - Interactive mapping for geographically weighted correlation in big census data
Tsutsumida N; Percival J; Murakami D; Yoshida T; Nakaya T
29th International Cartographic Association, 2019年05月, [国際会議]
英語, ポスター発表 - Landsat-based Phenological Classification Mapping in Japan
Tsutsumida N; Nagai S; Rodriguez-Veiga P; Miura T
JPGU 2019, 2019年05月, [国際会議]
英語, 口頭発表(一般) - Detecting and quantifying forest dynamics using SAR time-series data in Indonesia
Rodriguez-Veiga P; Tsutsumida N
JPGU 2019, 2019年05月, [国際会議]
英語, ポスター発表 - 日本国内を対象とした土地被覆データの不確実性の検証
堤田 成政; 大澤 剛士; 土居 秀幸
第66回日本生態学会大会, 2019年03月, [国内会議]
日本語, ポスター発表 - リモートセンシングによる広域観測データの空間誤差推定に関する研究
堤田 成政; Rodríguez-Veiga P
第 21 回 環境リモートセンシングシンポジウム, 2019年02月, [国内会議]
日本語, ポスター発表 - NDVI-based threshold Approach to Estimate Potential Vegetation Cover Using Integrated Google earth engine (GEE) and GIS
Putri U.N; Tsutsumida N; Saizen I
IPB and KU International Symposium on Education and Research in Global Environmental Studies In Asia, 2018年11月, [国際会議]
英語, ポスター発表 - オープンデータで活躍する地理情報科学
堤田 成政
オンラインサイエンスカフェ, 2018年06月, [招待有り]
日本語, 公開講演,セミナー,チュートリアル,講習,講義等 - Global Phenological Classification Mapping
Narumasa Tsutsumida
Google Earth Engine mini summit 2018 in Tokyo, 2018年03月, [国際会議]
英語, 口頭発表(招待・特別) - 大規模リモートセンシングデータをもちいた土地被覆分類
堤田 成政
第65回日本生態学会大会, 2018年03月, [国内会議]
日本語, 口頭発表(一般) - Land Surface Phenologyと気候変動の空間相関
堤田 成政
第65回日本生態学会大会, 2018年03月, [国内会議]
日本語, 口頭発表(一般) - 時系列衛星画像データ処理ツールの紹介
堤田 成政
FOSS4G 2017 KYOTO.KANSAI, 2017年10月, [国内会議]
日本語, 公開講演,セミナー,チュートリアル,講習,講義等 - 全球レベルの時系列衛星画像データを処理してOSSに渡すまで
堤田成政
FOSS4G HOKKAIDO, 2017年07月, [国内会議]
日本語, 公開講演,セミナー,チュートリアル,講習,講義等 - Sub-Pixel Classification of MODIS EVI for Annual Mappings of Impervious Surface Areas in Jakarta Metropolitan Areas
Tsutsumida N
Padjadjaran University, 2017年03月, [招待有り]
英語, 公開講演,セミナー,チュートリアル,講習,講義等 - Introduction of this meeting and Spatio-temporal analysis for land cover and climate data
Tsutsumida N
research meeting of Applied Geographic Information Science, 2017年02月
英語, 口頭発表(一般) - Land cover classification and accuracy assessment
堤田 成政
Osaka city university, 2017年02月, [招待有り]
公開講演,セミナー,チュートリアル,講習,講義等 - GRASS GIS7とRによる時系列ラスター処理
堤田 成政
FOSS4G 2016 NARA.KANSAI., 2016年09月, [国内会議]
日本語, 公開講演,セミナー,チュートリアル,講習,講義等 - Volunteer-based Mapping -Active learning tools for geographical educations-
Tsutsumida N
Teacher’s Forum in UK-Japan Science Workshop, 2016年07月
英語, その他 - Introduction to spatial analysis in R
N.Tsutsumida
Special workshop on spatial analysis using R software, University of Philippines, Los Banos, Philippines, 2015年03月, [招待有り]
英語, 公開講演,セミナー,チュートリアル,講習,講義等 - Cluster analysis using Open GeoDa
N.Tsutsumida
Special lecture at National Statistical Office, NSO office, Ulaanbaatar, Mongolia, 2014年06月, [招待有り]
公開講演,セミナー,チュートリアル,講習,講義等
■ Works_作品等
- WOAkMedoids: Whale Optimization Algorithm for K-Medoids Clustering
Chenan H; Tsutsumida N
2024年08月, [コンピュータソフト] - gwpcormapper: Geographically Weighted Partial Correlation Mapper
Percival J.E.H; Tsutsumida N
2021年12月, [コンピュータソフト] - GWpcor: A R function for geographically weighted partial correlation analysis
Tsutsumida N.; Percival J.
2020年05月, [コンピュータソフト] - GWnnegPCA: Geographically Weighted Non-Negative Principal Components Analysis
Tsutsumida N.
2020年03月, [コンピュータソフト] - scgwr: Scalable Geographically Weighted Regression
Murakami D.; Tsutsumida N.; Yoshida T.; Nakaya T.; Lu B.
2019年05月, [コンピュータソフト]
- 森林内を飛行するドローンレーザーによる空隙分布の高精度評価
日本学術振興会, 科学研究費助成事業, 基盤研究(B), 2022年04月01日 - 2025年03月31日
加藤 顕; 堀田 紀文; 三谷 徹; 堤田 成政; 早川 裕弌; 鈴木 智, 千葉大学
配分額(総額):17550000, 配分額(直接経費):13500000, 配分額(間接経費):4050000
課題番号:22H02374 - ユーザーの目的に応じた土地被覆分類作成システムの基盤構築
日本学術振興会, 科学研究費助成事業, 若手研究, 2020年04月01日 - 2024年03月31日
堤田 成政, 埼玉大学
配分額(総額):4160000, 配分額(直接経費):3200000, 配分額(間接経費):960000
2021年度に計画していた研究の進捗は下記のとおりである。
[II. 分類クラスのデザイン策定] FAOのフレームワークであるLand Cover Classification System version3(LCCS3)をもとに分類クラスデザインの策定を試みている。2020年度からの課題である教師付き分類に必要な地上写真データの不足に伴い現状はLCCS3に則った13クラス(水域;都市;草地;牧草地;畑地;水田;低木地;常緑針葉樹;落葉針葉樹;常緑広葉樹;落葉広葉樹;竹;裸地)を設定している。IIIの進捗や、それに伴う課題に応じて、技術的に実現可能なクラスデザインの設計をこれからも引き続き検討する。
[III. 参照データの作成モデルの開発] 現地写真より土地被覆を推定する画像認識モデルの開発を継続している。現時点では対象とする13分類クラスに対し、Mapillary APIを通じて入手した位置情報付き地上写真とPlanet衛星画像からのセグメントを紐付ける技術開発に着手しており、半自動的に地上参照データを構築するシステムが実現しつつある。現段階ではアノテーション精度が実用的なレベルに達していないため、来年度以降にモデルやアルゴリズムをアップデートしていく。
[IV. オープンジオビッグデータ分析による土地被覆分類]地上写真で撮影された土地被覆は植生の季節変動を考慮する必要がある。リモートセンシングデータより作成したモデルからの季節変動評価の一環として紅葉に着目し、複数のモデルを評価した。土地被覆分類システム構築は地上参照データ構築が実現し次第着手予定である。必要となる衛星画像データは入手済である。
課題番号:20K20005 - ベトナム少数民族の生活構造の緩やかな変質に対する未来志向型生業モデルの提唱
日本学術振興会, 科学研究費助成事業, 基盤研究(B), 2016年04月01日 - 2020年03月31日
西前 出; 淺野 悟史; 堤田 成政; 小林 広英; 時任 美乃理, 京都大学
配分額(総額):17680000, 配分額(直接経費):13600000, 配分額(間接経費):4080000
ベトナム中部の山間部の集落を対象とし,アカシア林業に極度に依存していく住民の生活構造の変質とその脆弱性をフィールド調査を通じて明示することを通じて,将来を想定した未来志向型の生業モデルを提唱することを目的としている。多くのフィールド調査で1次データを収集し,GIS分析を用いながら,アカシア林業以外にも副次的に存続している生業を発掘し,その重要性を示した。政府等による外的支援は多くの場合,既存のそうした生業に負の影響を与えることも明らかにし,適切な支援と既存の生業を存続させる形で多様な生業で維持されている構造を堅持することが重要であることを指摘した。
課題番号:16H05660 - 地域資源を活用した自然災害緩和型の新たな農業生産システム
日本学術振興会, 科学研究費助成事業, 基盤研究(B), 2016年04月01日 - 2019年03月31日
西前 出; 淺野 悟史; 堤田 成政; 山下 良平; 時任 美乃理, 京都大学
配分額(総額):15340000, 配分額(直接経費):11800000, 配分額(間接経費):3540000
自然災害の農業被害に対し,外部からの資本導入や新たなインフラ整備等,これまで主流であった対策や復旧のあり方を見直し,その地域に元々ある資源(特に農業生産システム)に関連する資源)を活用し,それらの最適利用を通じた「自然災害緩和型の新たな農業生産システム」を都市農村連関,在来農業の見直しを通じて検討した。
課題番号:16H03311 - ボトムアップ型自然資源管理のためのオープンジオデータ活用の有用性の検証
日本学術振興会, 科学研究費助成事業, 若手研究(B), 2015年04月01日 - 2018年03月31日
堤田 成政, 京都大学
配分額(総額):3770000, 配分額(直接経費):2900000, 配分額(間接経費):870000
ボトムアップ型の自然資源管理活動の実践に向けて、オープンジオデータ(衛星画像やGISデータ,小地域統計データなど,オープンデータの中でも地理情報が付加されたデータ)に注目が集まるが、その有用性は十分に検討されていない。本研究では、オープンジオデータの活用実態の把握とデータ公開による影響を分析し、データ保持者に対するデータ公開の利点と課題を整理し、オープンジオデータを通じた一般ユーザーとの協業推進の方策を模索する。また、有用なデータ選択のため、オープンジオデータの質を局所的に評価していく手法を提案し、オープンジオデータの活用にむけた質的検討を推進する。
課題番号:15K21086