町原 秀二(マチハラ シュウジ)
理工学研究科 数理電子情報部門教授
理学部 数学科

研究者情報

■ 学位
  • 博士(理学), 北海道大学
■ 研究キーワード
  • 非線形偏微分方程式
■ 学歴
  • 2002年, 北海道大学, 理学研究科, 数学, 日本国
  • 2002年, 北海道大学
  • 1998年, 東京大学, 数理科学研究科, 数理科学, 日本国
  • 1998年
  • 1996年, 早稲田大学, 理工学部, 応用物理学科, 日本国
  • 1996年, 早稲田大学

業績情報

■ MISC
  • Scattering theory for the Dirac equation with a non-local term               
    Shuji Machihara; Kimitoshi Tsutaya
    巻:139, 号:4, 開始ページ:867, 終了ページ:878, 2009年
    Consider a scattering problem for the Dirac equation with a non-local term including the Hartree type, say the cubic convolution term. We show the existence of scattering operators for small initial data in the subcritical and critical Sobolev spaces.
    英語
    DOI:https://doi.org/10.1017/S0308210507000479
    DOI ID:10.1017/S0308210507000479, ISSN:0308-2105, eISSN:1473-7124, Web of Science ID:WOS:000268561500012
  • The Cauchy problem for the 1-D Dirac-Klein-Gordon equation               
    Shuji Machihara
    巻:14, 号:5-6, 開始ページ:625, 終了ページ:641, 2007年12月
    The Cauchy problem for the Dirac-Klein-Gordon equation are discussed in one space dimension. Time local and global existence for solutions with rough data, especially the solutions for Klein-Gordon equation in the critical and super critical Sobolev norm of [4] are considered. The solutions with general propagation speeds are dealt with. © 2007 Birkhaueser.
    英語
    DOI:https://doi.org/10.1007/s00030-007-5027-y
    DOI ID:10.1007/s00030-007-5027-y, ISSN:1021-9722, SCOPUS ID:38849149769
  • Dirac equation with certain quadratic nonlinearities in one space dimension               
    Shuji Machihara
    巻:9, 号:3, 開始ページ:421, 終了ページ:435, 2007年06月
    We discuss the time local existence of solutions to the Dirac equation for special types of quadratic nonlinearities in one space dimension. Solutions with more rough data than those of the previous work [15] are obtained. The Fourier transforms of solutions with respect to both variables x and t are investigated. Certain linear and bilinear estimates on solutions are derived, and a standard iteration argument gives the existence results.
    英語
    DOI:https://doi.org/10.1142/S0219199707002484
    DOI ID:10.1142/S0219199707002484, ISSN:0219-1997, Web of Science ID:WOS:000251009000006
  • The explicit solutions to the nonlinear Dirac equation and Dirac-Klein-Gordon equation               
    Shuji MacHihara; Takayuki Omoso
    巻:56, 号:1, 開始ページ:19, 終了ページ:30, 2007年06月
    In [3] Dias and Figueira have reported that the square of the solution for the nonlinear Dirac equation satisfies the linear wave equation in one space dimension. So the aim of this paper is to proceed with their work and to clarify a structure of the nonlinear Dirac equation. The explicit solutions to the nonlinear Dirac equation and Dirac-Klein-Gordon equation are obtained. © 2007 Springer-Verlag.
    英語
    DOI:https://doi.org/10.1007/s11587-007-0002-9
    DOI ID:10.1007/s11587-007-0002-9, ISSN:0035-5038, SCOPUS ID:34848894824
  • Dirac equation with certain quadratic nonlinearities in one space dimension               
    Shuji Machihara
    巻:9, 号:3, 開始ページ:421, 終了ページ:435, 2007年06月
    We discuss the time local existence of solutions to the Dirac equation for special types of quadratic nonlinearities in one space dimension. Solutions with more rough data than those of the previous work [15] are obtained. The Fourier transforms of solutions with respect to both variables x and t are investigated. Certain linear and bilinear estimates on solutions are derived, and a standard iteration argument gives the existence results. © World Scientific Publishing Company.
    英語
    DOI:https://doi.org/10.1142/S0219199707002484
    DOI ID:10.1142/S0219199707002484, ISSN:0219-1997, SCOPUS ID:34347354116
  • Bilinear estimates for the transport equations               
    Shuji Machihara
    Advanced Studies in Pure Mathematics-Asymptotic Analysis and Singularities, 巻:47, 号:1, 開始ページ:189, 終了ページ:196, 2007年
  • The Cauchy problem for the 1-D Dirac-Klein-Gordon equation               
    Shuji Machihara
    巻:14, 号:5-6, 開始ページ:625, 終了ページ:641, 2007年
    The Cauchy problem for the Dirac-Klein-Cordon equation are discussed in one space dimension. Time local and global existence for solutions with rough data, especially the solutions for Klein-Cordon equation in the critical and super critical Sobolev norm of [4] are considered. The solutions with general propagation speeds are dealt with.
    英語
    DOI:https://doi.org/10.1007/s00030-007-5027-y
    DOI ID:10.1007/s00030-007-5027-y, ISSN:1021-9722, Web of Science ID:WOS:000252402400009
  • Bilinear estimates for the transport equations               
    Shuji Machihara
    巻:47, 号:1, 開始ページ:189, 終了ページ:196, 2007年
  • One dimensional Dirac equation with quadratic nonlinearities               
    S Machihara
    巻:13, 号:2, 開始ページ:277, 終了ページ:290, 2005年07月
    The local well-posedness for the nonlinear Dirac equation with special forms of quadratic nonlinearities in one space dimension is obtained by two approaches. One is to apply the Fourier restriction norm method of Bourgain [2, 3] by showing the bilinear estimates for the nonlinearities. Another is to study the explicit solutions for wave equations and derive another bilinear estimates similar with Bournaveas [4].
    英語
    ISSN:1078-0947, Web of Science ID:WOS:000228933400003
  • Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation               
    S Machihara; M Nakamura; K Nakanishi; T Ozawa
    巻:219, 号:1, 開始ページ:1, 終了ページ:20, 2005年02月
    We prove endpoint Strichartz estimates for the Klein-Gordon and wave equations in mixed norms on the polar coordinates in three spatial dimensions. As an application, global wellposed-ness of the nonlinear Dirac equation is shown for small data in the energy class with some regularity assumption for the angular variable. (C) 2004 Elsevier Inc. All fights reserved.
    英語
    DOI:https://doi.org/10.1016/j.jfa.2004.07.005
    DOI ID:10.1016/j.jfa.2004.07.005, ISSN:0022-1236, Web of Science ID:WOS:000226268200001
  • One dimensional Dirac equation with quadratic nonlinearities               
    Shuji Machihara
    巻:13, 開始ページ:277, 終了ページ:290, 2005年
  • SMALL GLOBAL SOLUTIONS FOR NONLINEAR DIRAC EQUATIONS               
    Shuji Machihara; Makoto Nakamura; Tohru Ozawa
    巻:17, 号:5-6, 開始ページ:623, 終了ページ:636, 2004年05月
    The global Cauchy problem for nonlinear Dirac and Klein-Gordon equations in space-time Rn+1 is studied in Sobolev and Besov spaces. Global existence of small solutions is proved under a scale-invariant setting when reduced to the corresponding massless case.
    英語
    ISSN:0893-4983, Web of Science ID:WOS:000208532700009
  • The inviscid limit for the complex Ginzburg—Landau equation               
    Shuji Machihara; Yoshihisa Nakamura
    Journal of Mathematical Analysis and Applications, 巻:281, 号:2, 開始ページ:552, 終了ページ:564, 2003年05月
    We study the inviscid limit of the complex Ginzburg-Landau equation. We observe that the solutions for the complex Ginzburg-Landau equation converge to the corresponding solutions for the nonlinear Schrodinger equation. We give its convergence rate. We estimate the integral forms of solutions for two equations. (C) 2003 Elsevier Science (USA). All rights reserved.
    英語
    DOI:https://doi.org/10.1016/S0022-247X(03)00143-4
    DOI ID:10.1016/S0022-247X(03)00143-4, ISSN:0022-247X, Web of Science ID:WOS:000183591300011
  • The inviscid limit for the complex Ginzburg-Landau equation               
    S Machihara; Y Nakamura
    巻:281, 号:2, 開始ページ:552, 終了ページ:564, 2003年05月
    We study the inviscid limit of the complex Ginzburg-Landau equation. We observe that the solutions for the complex Ginzburg-Landau equation converge to the corresponding solutions for the nonlinear Schrodinger equation. We give its convergence rate. We estimate the integral forms of solutions for two equations. (C) 2003 Elsevier Science (USA). All rights reserved.
    英語
    DOI:https://doi.org/10.1016/S0022-247X(03)00143-4
    DOI ID:10.1016/S0022-247X(03)00143-4, ISSN:0022-247X, Web of Science ID:WOS:000183591300011
  • Interpolation inequalities in Besov spaces               
    Shuji Machihara; Tohru Ozawa
    巻:131, 号:5, 開始ページ:1553, 終了ページ:1556, 2003年05月
    In this paper we present an interpolation inequality in the homogeneous Besov spaces on ℝn, which reduces to a number of well-known inequalities in special cases.
    英語
    DOI:https://doi.org/10.1090/S0002-9939-02-06715-1
    DOI ID:10.1090/S0002-9939-02-06715-1, ISSN:0002-9939, SCOPUS ID:0037408055
  • Interpolation inequalities in Besov spaces               
    S Machihara; T Ozawa
    巻:131, 号:5, 開始ページ:1553, 終了ページ:1556, 2003年
    In this paper we present an interpolation inequality in the homogeneous Besov spaces on R-n, which reduces to a number of well-known inequalities in special cases.
    英語
    DOI:https://doi.org/10.1090/S0002-9939-02-06715-1
    DOI ID:10.1090/S0002-9939-02-06715-1, ISSN:0002-9939, Web of Science ID:WOS:000180467000026
  • Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation               
    S Machihara; K Nakanishi; T Ozawa
    巻:19, 号:1, 開始ページ:179, 終了ページ:194, 2003年
    In this paper we study the Cauchy problem for the nonlinear Dirac equation in the Sobolev space H-s. We prove the existence and uniqueness of global solutions for small data in H-s with s > 1. The method of proof is based on the Strichartz estimate of L-t(2) type for Dirac and Klein-Gordon equations. We also prove that the solutions of the nonlinear Dirac equation after modulation of phase converge to the corresponding solutions of the nonlinear Schrodinger equation as the speed of light tends to infinity.
    英語
    ISSN:0213-2230, Web of Science ID:WOS:000184289400007
  • Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations               
    S Machihara; K Nakanishi; T Ozawa
    巻:322, 号:3, 開始ページ:603, 終了ページ:621, 2002年03月
    We study the nonrelativistic limit of the Cauchy problem for the nonlinear Klein-Gordon equation and prove that any finite energy solution converges to the corresponding solution of the nonlinear Schrodinger equation in the energy space, after the infinite oscillation in time is removed. We also derive the optimal rate of convergence in L-2.
    英語
    DOI:https://doi.org/10.1007/s002080100293
    DOI ID:10.1007/s002080100293, ISSN:0025-5831, Web of Science ID:WOS:000175046400009
  • Small data global solutions for Dirac--Klein--Gordon equation               
    Shuji Machihara
    Differential and Integral Equations, 巻:15, 開始ページ:1511, 終了ページ:1517, 2002年
  • Small data global solutions for Dirac--Klein--Gordon equation               
    Shuji Machihara
    巻:15, 開始ページ:1511, 終了ページ:1517, 2002年
  • The Nonrelativistic Limit of the Nonlinear Klein--Gordon Equation               
    Shuji Machihara
    Funkcialaj Ekvacioj, 巻:44, 開始ページ:243, 終了ページ:252, 2001年
  • The Nonrelativistic Limit of the Nonlinear Klein--Gordon Equation               
    Shuji Machihara
    巻:44, 開始ページ:243, 終了ページ:252, 2001年
■ 所属学協会
  • 日本数学会
■ 共同研究・競争的資金等の研究課題
  • -               
    競争的資金
  • -               
    競争的資金
TOP