SEARCH

Search Details

NAKAMURA Masayoshi
Life Science DivisionProfessor
Biochemistry&Molecular Biology

Researcher information

■ Research Keyword
  • Microtubule
  • Left and right handedness
■ Field Of Study
  • Life sciences, Plants: molecular biology and physiology
■ Career
  • Apr. 2025 - Present, Saitama University, Graduate School of Science and Engineering, Professor
  • Apr. 2025 - Present, Nagoya University, Institute of Transformative Bio-Molecules, Visiting Professor
  • Nov. 2021 - Mar. 2025, Nagoya University, Institute of Transformative Bio-Molecules, Designated Associate Professor
  • Apr. 2017 - Oct. 2021, Nagoya University, ITbM, Designated Lecturer
  • Apr. 2011 - Mar. 2017, Carnegie Institution for Science, Department of Plant Biology, Postdoctoral fellow
  • Apr. 2012 - Sep. 2015, Carnegie Institution for Science, Department of Plant Biology, Human Frontier Science Program Postdoctoral Fellowship, United States
  • Apr. 2009 - Mar. 2011, Nara Institute of Science and Technology, Graduate school of biological sciences, Postdoctoral fellow
■ Educational Background
  • 2009, Nara Institute of Science and Technology, Graduate School of Biological Sciences, Japan
  • 2003, Kyoto University, Faculty of Agriculture, Japan
■ Award
  • 2017, Career Development Award, Human Frontier Science Program
    Masayoshi Nakamura
  • 2014, Tansley Medal, Finalist, New Phytologist
    Masayoshi Nakamura

Performance information

■ Paper
  • Fertilization-dependent phloem end gate regulates seed size               
    Xiaoyan Liu; Kohdai P. Nakajima; Prakash Babu Adhikari; Xiaoyan Wu; Shaowei Zhu; Kentaro Okada; Tomoko Kagenishi; Ken-ichi Kurotani; Takashi Ishida; Masayoshi Nakamura; Yoshikatsu Sato; Yaichi Kawakatsu; Liyang Xie; Chen Huang; Jiale He; Ken Yokawa; Shinichiro Sawa; Tetsuya Higashiyama; Kent J. Bradford; Michitaka Notaguchi; Ryushiro D. Kasahara
    Current Biology, Apr. 2025, [Reviewed]
    Elsevier BV, Scientific journal
    DOI:https://doi.org/10.1016/j.cub.2025.03.033
    DOI ID:10.1016/j.cub.2025.03.033, ISSN:0960-9822
  • Near-Infrared Autofluorescence Imaging of Nuclei in Living Plant Roots               
    Akira Yoshinari; Masayoshi Nakamura
    BIO-PROTOCOL, Volume:15, Number:1369, 2025, [Reviewed], [Last, Corresponding]
    Bio-Protocol, LLC, Scientific journal
    DOI:https://doi.org/10.21769/bioprotoc.5274
    DOI ID:10.21769/bioprotoc.5274, ISSN:2331-8325
  • Plant microtubule nucleating apparatus and its potential signaling pathway               
    Noriyoshi Yagi; Satoshi Fujita; Masayoshi Nakamura
    Current Opinion in Plant Biology, Number:82, First page:102624, Dec. 2024, [Reviewed], [Last, Corresponding]
    Scientific journal
    DOI:https://doi.org/10.1016/j.pbi.2024.102624
    DOI ID:10.1016/j.pbi.2024.102624, ORCID:166739855
  • Identification of nuclear pore proteins at plasmodesmata               
    T. Moritz Schladt; Manuel Miras; Jona Obinna Ejike; Mathieu Pottier; Lin Xi; Andrea Restrepo-Escobar; Masayoshi Nakamura; Niklas Pütz; Sebastian Hänsch; Chen Gao; Julia Engelhorn; Marcel Dickmanns; Gwendolyn V. Davis; Ahan Dalal; Sven Gombos; Ronja Lange; Rüdiger Simon; Waltraud X. Schulze; Wolf B. Frommer
    Sep. 2024
    DOI:https://doi.org/10.1101/2024.09.02.610746
    DOI ID:10.1101/2024.09.02.610746, ORCID:166924311
  • Water-soluble aromatic nanobelt with unique cellular internalization
    Konstantin Günther; Hideya Kono; Hiroki Shudo; Reika Isoda; Masayoshi Nakamura; Akiko Yagi; Kazuma Amaike; Kenichiro Itami
    Number:64, First page:e202414645, Jul. 2024, [Reviewed]
    A water-soluble aromatic nanobelt was synthesized, and its cellular uptake behavior in HeLa cells was investigated. The late-stage functionalization of the parent methylene-bridged [6]cycloparaphenylene ([6]MCPP) provided an easily accessible alkyne-functionalized nanobelt in a single reaction step. The alkyne-substituted [6]MCPP was subjected to Cu-catalyzed azide-alkyne cycloaddition by using a dye-attached azide to obtain a water-soluble aromatic nanobelt. Cell-imaging experiments on the synthesized nanobelt in HeLa cells revealed stop-and-go cellular uptake dynamics. Similar experiments with control molecules and theoretical studies indicated that the unique dynamics of the nanobelt was derived from the belt-shaped structure.
    American Chemical Society (ACS)
    DOI:https://doi.org/10.26434/chemrxiv-2024-vv4nb
    DOI ID:10.26434/chemrxiv-2024-vv4nb
  • Near‐infrared imaging of phytochrome‐derived autofluorescence in plant nuclei               
    Akira Yoshinari; Reika Isoda; Noriyoshi Yagi; Yoshikatsu Sato; Jelmer J. Lindeboom; David W. Ehrhardt; Wolf B. Frommer; Masayoshi Nakamura
    The Plant Journal, Jun. 2024, [Reviewed], [Last, Corresponding]
    Scientific journal
    DOI:https://doi.org/10.1111/tpj.16699
    DOI ID:10.1111/tpj.16699, ORCID:155940811
  • Loss-of-function mutation in the polyamine transporter geneOsLAT5as a selectable marker for genome editing               
    Kyrylo Schenstnyi; Zhengzhi Zhang; Bo Liu; Masayoshi Nakamura; Van Schepler-Luu; Eliza P.I. Loo; Bing Yang; Wolf B. Frommer
    Dec. 2023
    DOI:https://doi.org/10.1101/2023.12.12.571390
    DOI ID:10.1101/2023.12.12.571390, ORCID:148683583
  • Seed size control via phloem end by callose deposition/degradation of β-1,3-glucanase
    Xiaoyan Liu; Kohdai P Nakajima; Xiaoyan Wu; Shaowei Zhu; Prakash Babu Adhikari; Kentaro Okada; Kenichi Kurotani; Takashi Ishida; Masayoshi Nakamura; Yoshikatsu Sato; Liyang Xie; Chen Huang; Jiale He; Shinichiro Sawa; Tetsuya Higashiyama; Michitaka Notaguchi; Ryushiro Dora Kasahara
    Jul. 2023
    Seed formation is crucial for lives of plants as well as humans; however, the mechanisms governing seed size require further investigation. Here, we present a new mechanism to modify the seed size by the newly identified phloem end that support nutrient transport, at the chalazal end of the ovule, however, blocked by callose deposition. Callose is removed after central cell fertilization (open state), allowing nutrients to be transported to the seed. However, if fertilization fails, callose deposition persists (closed state), preventing the phloem end from transporting nutrients. β-1,3-glucanase genes, including putative plasmodesmata-associated proteins (AtBG_ppap), were identified as regulators of callose removal. The Atbg_ppap mutant had the phloem end in the closed state and produced smaller seeds due to incomplete callose degradation. In contrast, the AtBG_ppap overexpression line produced larger seeds than the wild type due to continuous callose degradation, indicating that the phloem end regulates substance flow via callose deposition/degradation.
    Cold Spring Harbor Laboratory
    DOI:https://doi.org/10.1101/2023.07.23.550179
    DOI ID:10.1101/2023.07.23.550179
  • SWEET13 transport of sucrose, but not gibberellin, restores male fertility in Arabidopsis sweet13;14               
    Reika Isoda; Zoltan Palmai; Akira Yoshinari; Li-Qing Chen; Florence Tama; Wolf B. Frommer; Masayoshi Nakamura
    Proceedings of the National Academy of Sciences, Volume:119, Number:42, First page:e2207558119, Oct. 2022, [Reviewed], [Last, Corresponding], [International magazine]
    SWEET sucrose transporters play important roles in the allocation of sucrose in plants. Some SWEETs were shown to also mediate transport of the plant growth regulator gibberellin (GA). The close physiological relationship between sucrose and GA raised the questions of whether there is a functional connection and whether one or both of the substrates are physiologically relevant. To dissect these two activities, molecular dynamics were used to map the binding sites of sucrose and GA in the pore of SWEET13 and predicted binding interactions that might be selective for sucrose or GA. Transport assays confirmed these predictions. In transport assays, the N76Q mutant had 7x higher relative GA 3 activity, and the S142N mutant only transported sucrose. The impaired pollen viability and germination in sweet13;14 double mutants were complemented by the sucrose-selective SWEET13 S142N , but not by the SWEET13 N76Q mutant, indicating that sucrose is the physiologically relevant substrate and that GA transport capacity is dispensable in the context of male fertility. Therefore, GA supplementation to counter male sterility may act indirectly via stimulating sucrose supply in male sterile mutants. These findings are also relevant in the context of the role of SWEETs in pathogen susceptibility.
    Proceedings of the National Academy of Sciences, English, Scientific journal
    DOI:https://doi.org/10.1073/pnas.2207558119
    DOI ID:10.1073/pnas.2207558119, ISSN:0027-8424, eISSN:1091-6490, PubMed ID:36215460, PubMed Central ID:PMC9586311
  • OsSWEET11b, a potential sixth leaf blight susceptibility gene involved in sugar transport‐dependent male fertility               
    Lin‐Bo Wu; Joon‐Seob Eom; Reika Isoda; Chenhao Li; Si Nian Char; Dangping Luo; Van Schepler‐Luu; Masayoshi Nakamura; Bing Yang; Wolf B. Frommer
    New Phytologist, Volume:234, Number:3, First page:975, Last page:989, May 2022, [Reviewed]
    Wiley, Scientific journal
    DOI:https://doi.org/10.1111/nph.18054
    DOI ID:10.1111/nph.18054, ORCID:109746610
  • Finding a right place to cut: How katanin is targeted to cellular severing sites               
    Masayoshi Nakamura; Noriyoshi Yagi; Takashi Hashimoto
    Quantitative Plant Biology, Volume:3, 2022, [Reviewed], [Lead, Corresponding]
    Cambridge University Press ({CUP}), Scientific journal
    DOI:https://doi.org/10.1017/qpb.2022.2
    DOI ID:10.1017/qpb.2022.2, ORCID:111357685
  • An anchoring complex recruits katanin for microtubule severing at the plant cortical nucleation sites
    Noriyoshi Yagi; Takehide Kato; Sachihiro Matsunaga; David W. Ehrhardt; Masayoshi Nakamura; Takashi Hashimoto
    Nature Communications, Volume:12, Number:1, Dec. 2021, [Reviewed], [Corresponding]
    AbstractMicrotubules are severed by katanin at distinct cellular locations to facilitate reorientation or amplification of dynamic microtubule arrays, but katanin targeting mechanisms are poorly understood. Here we show that a centrosomal microtubule-anchoring complex is used to recruit katanin in acentrosomal plant cells. The conserved protein complex of Msd1 (also known as SSX2IP) and Wdr8 is localized at microtubule nucleation sites along the microtubule lattice in interphase Arabidopsis cells. Katanin is recruited to these sites for efficient release of newly formed daughter microtubules. Our cell biological and genetic studies demonstrate that Msd1-Wdr8 acts as a specific katanin recruitment factor to cortical nucleation sites (but not to microtubule crossover sites) and stabilizes the association of daughter microtubule minus ends to their nucleation sites until they become severed by katanin. Molecular coupling of sequential anchoring and severing events by the evolutionarily conserved complex renders microtubule release under tight control of katanin activity.
    Springer Science and Business Media {LLC}, Scientific journal
    DOI:https://doi.org/10.1038/s41467-021-24067-y
    DOI ID:10.1038/s41467-021-24067-y, eISSN:2041-1723, ORCID:95634742
  • Designs, applications, and limitations of genetically encoded fluorescent sensors to explore plant biology               
    Mayuri Sadoine; Yuuma Ishikawa; Thomas J. Kleist; Michael M. Wudick; Masayoshi Nakamura; Guido Grossmann; Wolf B. Frommer; Cheng-Hsun Ho
    Plant Physiology, Volume:187, Number:2, First page:485, Last page:503, Oct. 2021, [Reviewed]
    Oxford University Press ({OUP}), Scientific journal
    DOI:https://doi.org/10.1093/plphys/kiab353
    DOI ID:10.1093/plphys/kiab353, ORCID:101065356
  • Advances in Synthetic Fluorescent Probe Labeling for Live Cell Imaging in Plants               
    Noriyoshi Yagi; Akira Yoshinari; Ryu J Iwatate; Reika Isoda; Wolf B Frommer; Masayoshi Nakamura
    Plant and Cell Physiology, Jul. 2021, [Reviewed], [Last, Corresponding], [Domestic magazine]
    Fluorescent probes are a powerful tool for visualizing cellular and subcellular structures, their dynamics, and cellular molecules in living cells, and enables us to monitor cellular processes in a spatio-temporal manner within complex and crowded systems. In addition to popular fluorescent proteins, a wide variety of small-molecule dyes have been synthesized through close association with the interdisciplinary field of chemistry and biology, ranging from those suitable for labeling cellular compartments such as organelles to those for labeling intracellular biochemical and biophysical processes and signaling. In recent years, self-labeling technologies including the SNAP-tag system have allowed us to attach these dyes to cellular domains or specific proteins, and are beginning to be employed in plant studies. In this mini review, we will discuss the current range of synthetic fluorescent probes that have been exploited for live cell imaging and the recent advances in the application that enable genetical tagging of synthetic probes in plant research.
    Oxford University Press ({OUP}), English, Scientific journal
    DOI:https://doi.org/10.1093/pcp/pcab104
    DOI ID:10.1093/pcp/pcab104, ORCID:96678142, PubMed ID:34233356
  • Sensors for the quantification, localization and analysis of the dynamics of plant hormones               
    Reika Isoda; Akira Yoshinari; Yuuma Ishikawa; Mayuri Sadoine; Rüdiger Simon; Wolf B. Frommer; Masayoshi Nakamura
    The Plant Journal, Volume:105, Number:2, First page:542, Last page:557, Jan. 2021, [Reviewed], [Last, Corresponding], [International magazine]
    Plant hormones play important roles in plant growth and development and physiology, and in acclimation to environmental changes. The hormone signaling networks are highly complex and interconnected. It is thus important to not only know where the hormones are produced, how they are transported and how and where they are perceived, but also to monitor their distribution quantitatively, ideally in a non-invasive manner. Here we summarize the diverse set of tools available for quantifying and visualizing hormone distribution and dynamics. We provide an overview over the tools that are currently available, including transcriptional reporters, degradation sensors, and luciferase and fluorescent sensors, and compare the tools and their suitability for different purposes.
    Wiley, English, Scientific journal
    DOI:https://doi.org/10.1111/tpj.15096
    DOI ID:10.1111/tpj.15096, ORCID:84065697, PubMed ID:33231903, PubMed Central ID:PMC7898640
  • Using Genetically Encoded Fluorescent Biosensors for Quantitative In Vivo Imaging               
    Akira Yoshinari; Jacob Moe-Lange; Thomas J. Kleist; Heather N. Cartwright; David A. Quint; David W. Ehrhardt; Wolf B. Frommer; Masayoshi Nakamura
    Methods in Molecular Biology, Volume:2200, First page:303, Last page:322, 2021, [Reviewed], [Last, Corresponding], [International magazine]
    Fluorescent biosensors are powerful tools for tracking analytes or cellular processes in live organisms and allowing visualization of the spatial and temporal dynamics of cellular regulators. Fluorescent protein (FP)-based biosensors are extensively employed due to their high selectivity and low invasiveness. A variety of FP-based biosensors have been engineered and applied in plant research to visualize dynamic changes in pH, redox state, concentration of molecules (ions, sugars, peptides, ATP, reactive oxygen species, and phytohormones), and activity of transporters. In this chapter, we briefly summarize reported uses of FP-based biosensors in planta and show simple methods to monitor the dynamics of intracellular Ca2+ in Arabidopsis thaliana using a ratiometric genetically encoded Ca2+ indicator, MatryoshCaMP6s.
    Springer US, English, In book
    DOI:https://doi.org/10.1007/978-1-0716-0880-7_14
    DOI ID:10.1007/978-1-0716-0880-7_14, ISSN:1064-3745, eISSN:1940-6029, PubMed ID:33175384
  • Mechanistic Insights into Plant Chiral Growth
    Masayoshi Nakamura; Takashi Hashimoto
    Symmetry, Dec. 2020, [Reviewed], [Lead, Corresponding]
    Scientific journal
    DOI:https://doi.org/10.3390/sym12122056
    DOI ID:10.3390/sym12122056, ORCID:85333165
  • The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple
    Qian Peng; Yaming Cai; Enhui Lai; Masayoshi Nakamura; Liao Liao; Beibei Zheng; Collins Ogutu; Sylvia Cherono; Yuepeng Han
    BMC Plant Biology, Volume:20, Number:1, Dec. 2020, [Reviewed]
    Springer Science and Business Media {LLC}, English, Scientific journal
    DOI:https://doi.org/10.1186/s12870-020-02406-3
    DOI ID:10.1186/s12870-020-02406-3, ISSN:1471-2229, eISSN:1471-2229, ORCID:83175808
  • Covalent Self-Labeling of Tagged Proteins with Chemical Fluorescent Dyes in BY-2 Cells and Arabidopsis Seedlings
    Ryu J. Iwatate; Akira Yoshinari; Noriyoshi Yagi; Marek Grzybowski; Hiroaki Ogasawara; Mako Kamiya; Toru Komatsu; Masayasu Taki; Shigehiro Yamaguchi; Wolf B. Frommer; Masayoshi Nakamura
    The Plant Cell, Volume:32, Number:10, First page:3081, Last page:3094, Oct. 2020, [Reviewed], [Corresponding]
    American Society of Plant Biologists ({ASPB}), English, Scientific journal
    DOI:https://doi.org/10.1105/tpc.20.00439
    DOI ID:10.1105/tpc.20.00439, ISSN:1532-298X, eISSN:1532-298X, ORCID:83175786
  • A Novel Katanin-Tethering Machinery Accelerates Cytokinesis               
    Takema Sasaki; Motosuke Tsutsumi; Kohei Otomo; Takashi Murata; Noriyoshi Yagi; Masayoshi Nakamura; Tomomi Nemoto; Mitsuyasu Hasebe; Yoshihisa Oda
    Current Biology, Volume:29, Number:23, First page:4060, Last page:4070.e3, Dec. 2019, [Reviewed]
    Elsevier {BV}, English, Scientific journal
    DOI:https://doi.org/10.1016/j.cub.2019.09.049
    DOI ID:10.1016/j.cub.2019.09.049, ISSN:0960-9822, ORCID:83175826
  • CLASP stabilization of plus ends created by severing promotes microtubule creation and reorientation
    Jelmer J. Lindeboom; Masayoshi Nakamura; Marco Saltini; Anneke Hibbel; Ankit Walia; Tijs Ketelaar; Anne Mie C. Emons; John C. Sedbrook; Viktor Kirik; Bela M. Mulder; David W. Ehrhardt
    Journal of Cell Biology, Volume:218, Number:1, First page:190, Last page:205, Jan. 2019, [Reviewed], [Lead]
    Central to the building and reorganizing cytoskeletal arrays is creation of new polymers. Although nucleation has been the major focus of study for microtubule generation, severing has been proposed as an alternative mechanism to create new polymers, a mechanism recently shown to drive the reorientation of cortical arrays of higher plants in response to blue light perception. Severing produces new plus ends behind the stabilizing GTP-cap. An important and unanswered question is how these ends are stabilized in vivo to promote net microtubule generation. Here we identify the conserved protein CLASP as a potent stabilizer of new plus ends created by katanin severing in plant cells. Clasp mutants are defective in cortical array reorientation. In these mutants, both rescue of shrinking plus ends and the stabilization of plus ends immediately after severing are reduced. Computational modeling reveals that it is the specific stabilization of severed ends that best explains CLASP’s function in promoting microtubule amplification by severing and array reorientation.
    Rockefeller University Press, Scientific journal
    DOI:https://doi.org/10.1083/jcb.201805047
    DOI ID:10.1083/jcb.201805047, ISSN:0021-9525, eISSN:1540-8140, ORCID:49993591
  • SPR2 protects minus ends to promote severing and reorientation of plant cortical microtubule arrays
    Masayoshi Nakamura; Jelmer J. Lindeboom; Marco Saltini; Bela M. Mulder; David W. Ehrhardt
    Journal of Cell Biology, Volume:217, Number:3, First page:915, Last page:927, Mar. 2018, [Reviewed], [Lead]
    Rockefeller University Press, English, Scientific journal
    DOI:https://doi.org/10.1083/jcb.201708130
    DOI ID:10.1083/jcb.201708130, ISSN:1540-8140, ORCID:40637131, SCOPUS ID:85042864403
  • Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues               
    Nakamura, Masayoshi
    New Phytologist, Volume:205, Number:3, First page:1022, Last page:1027, 2015, [Reviewed], [Corresponding]
    English, Scientific journal
    DOI:https://doi.org/10.1111/nph.12932
    DOI ID:10.1111/nph.12932, ISSN:0028-646X, eISSN:1469-8137, ORCID:36106191, Web of Science ID:WOS:000348730600012
  • GCP-WD Mediates gamma-TuRC Recruitment and the Geometry of Microtubule Nucleation in Interphase Arrays of Arabidopsis               
    Walia, Ankit; Nakamura, Masayoshi; Moss, Dorianne; Kirik, Viktor; Hashimoto, Takashi; Ehrhardt, David W.
    Current Biology, Volume:24, Number:21, First page:2548, Last page:2555, 2014, [Reviewed]
    English, Scientific journal
    DOI:https://doi.org/10.1016/j.cub.2014.09.013
    DOI ID:10.1016/j.cub.2014.09.013, ISSN:0960-9822, eISSN:1879-0445, ORCID:36106192, Web of Science ID:WOS:000344171500026
  • A Mechanism for Reorientation of Cortical Microtubule Arrays Driven by Microtubule Severing               
    Lindeboom, Jelmer J.; Nakamura, Masayoshi; Hibbel, Anneke; Shundyak, Kostya; Gutierrez, Ryan; Ketelaar, Tijs; Emons, Anne Mie C.; Mulder, Bela M.; Kirik, Viktor; Ehrhardt, David W.
    Science, Volume:342, Number:6163, First page:1202, Last page:+, 2013, [Reviewed]
    English, Scientific journal
    DOI:https://doi.org/10.1126/science.1245533
    DOI ID:10.1126/science.1245533, ISSN:0036-8075, eISSN:1095-9203, ORCID:36106193, Web of Science ID:WOS:000327857900038
  • RNA Processing Bodies, Peroxisomes, Golgi Bodies, Mitochondria, and Endoplasmic Reticulum Tubule Junctions Frequently Pause at Cortical Microtubules               
    Hamada, Takahiro; Tominaga, Motoki; Fukaya, Takashi; Nakamura, Masayoshi; Nakano, Akihiko; Watanabe, Yuichiro; Hashimoto, Takashi; Baskin, Tobias I.
    Plant and Cell Physiology, Volume:53, Number:4, First page:699, Last page:708, 2012, [Reviewed]
    English, Scientific journal
    DOI:https://doi.org/10.1093/pcp/pcs025
    DOI ID:10.1093/pcp/pcs025, ISSN:0032-0781, eISSN:1471-9053, ORCID:36106195, Web of Science ID:WOS:000302809300010
  • Arabidopsis GCP3-interacting protein 1/MOZART 1 is an integral component of the gamma-tubulin-containing microtubule nucleating complex               
    Nakamura, Masayoshi; Yagi, Noriyoshi; Kato, Takehide; Fujita, Satoshi; Kawashima, Noriyuki; Ehrhardt, David W.; Hashimoto, Takashi
    Plant Journal, Volume:71, Number:2, First page:216, Last page:225, 2012, [Reviewed], [Lead]
    English, Scientific journal
    DOI:https://doi.org/10.1111/j.1365-313X.2012.04988.x
    DOI ID:10.1111/j.1365-313X.2012.04988.x, ISSN:0960-7412, ORCID:36106194, Web of Science ID:WOS:000306893400004
  • A plastidial sodium-dependent pyruvate transporter               
    Furumoto, Tsuyoshi; Yamaguchi, Teppei; Ohshima-Ichie, Yumiko; Nakamura, Masayoshi; Tsuchida-Iwata, Yoshiko; Shimamura, Masaki; Ohnishi, Junichi; Hata, Shingo; Gowik, Udo; Westhoff, Peter; Braeutigam, Andrea; Weber, Andreas P. M.; Izui, Katsura
    Nature, Volume:476, Number:7361, First page:472, Last page:U131, 2011, [Reviewed]
    English, Scientific journal
    DOI:https://doi.org/10.1038/nature10250
    DOI ID:10.1038/nature10250, ISSN:0028-0836, ORCID:36106196, Web of Science ID:WOS:000294209400041
  • Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array               
    Nakamura, Masayoshi; Ehrhardt, David W.; Hashimoto, Takashi
    Nature Cell Biology, Volume:12, Number:11, First page:1064, Last page:U49, 2010, [Reviewed], [Lead]
    English, Scientific journal
    DOI:https://doi.org/10.1038/ncb2110
    DOI ID:10.1038/ncb2110, ISSN:1465-7392, CiNii Articles ID:80021400446, ORCID:36106197, Web of Science ID:WOS:000283711500009
  • A mutation in the Arabidopsis gamma-tubulin-containing complex causes helical growth and abnormal microtubule branching               
    Nakamura, Masayoshi; Hashimoto, Takashi
    Journal of Cell Science, Volume:122, Number:13, First page:2208, Last page:2217, 2009, [Reviewed], [Lead]
    English, Scientific journal
    DOI:https://doi.org/10.1242/jcs.044131
    DOI ID:10.1242/jcs.044131, ISSN:0021-9533, CiNii Articles ID:80020448010, ORCID:36106198, PubMed ID:19509058, Web of Science ID:WOS:000267105100007
  • Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells               
    Nakamura, M; Naoi, K; Shoji, T; Hashimoto, T
    Plant and Cell Physiology, Volume:45, Number:9, First page:1330, Last page:1334, 2004, [Reviewed], [Lead]
    English, Scientific journal
    DOI:https://doi.org/10.1093/pcp/pch300
    DOI ID:10.1093/pcp/pch300, ISSN:0032-0781, ORCID:36106199, Web of Science ID:WOS:000224706900026
■ MISC
  • Elucidating the regulatory mechanisms of the activity of the sugar transporter SWEET               
    田中遥那; 田中遥那; 磯田玲華; 三城恵美; FROMMER Wolf B.; 中村匡良
    日本植物生理学会年会(Web), Volume:65th, 2024
    J-Global ID:202402212527745333
  • Live-cell imaging of plant nucleus using phytochrome-derived autofluorescence               
    YOSHINARI Akira; YOSHINARI Akira; ISODA Reika; YAGI Noriyoshi; FROMMER Wolf B.; FROMMER Wolf B.; FROMMER Wolf B.; NAKAMURA Masayoshi
    日本植物生理学会年会(Web), Volume:65th, 2024
    J-Global ID:202402275450484131
  • Sucrose or gibberellin?-the dissecting role of SWEET13               
    礒田玲華; PALMAI Zoltan; 吉成晃; CHEN Li-Qing; TAMA Florence; TAMA Florence; TAMA Florence; FROMMER Wolf B.; FROMMER Wolf B.; 中村匡良
    日本植物生理学会年会(Web), Volume:64th, 2023
    J-Global ID:202302218843055576
  • 糖輸送体SWEETの基質選択性を操作する               
    礒田玲華; PALMAI Zoltan; 吉成晃; CHEN Li-Qing; TAMA Florence; TAMA Florence; TAMA Florence; FROMMER Wolf B.; FROMMER Wolf B.; 中村匡良
    Volume:17th (Web), 2023
    J-Global ID:202302267143652694
  • フィトクロム蛍光を利用した植物核のライブイメージング               
    吉成晃; 吉成晃; 礒田玲華; 八木慎宜; フロマー ウォルフ; フロマー ウォルフ; フロマー ウォルフ; 中村匡良
    Volume:87th, 2023
    J-Global ID:202302267593300749
  • ホウ酸輸送体BOR1の分解を促進する新規化合物Polarin2の作用機序の解析               
    吉成晃; 吉成晃; 佐藤綾人; フロマー ウォルフ; フロマー ウォルフ; フロマー ウォルフ; 中村匡良
    Volume:69, 2023
    ISSN:2424-0575, J-Global ID:202402249046159634
  • Functional analysis of acidic loop in polar localization of DPK1               
    吉成晃; 吉成晃; 三城恵美; 加納圭子; 桑田啓子; FROMMER Wolf B.; FROMMER Wolf B.; FROMMER Wolf B.; 中村匡良
    日本植物生理学会年会(Web), Volume:64th, 2023
    J-Global ID:202302272313489999
  • Polarity switch of receptor-like kinases               
    吉成晃; 礒田玲華; 桑田啓子; FROMMER Wolf; FROMMER Wolf; FROMMER Wolf; 中村匡良
    日本植物生理学会年会(Web), Volume:63rd, 2022
    J-Global ID:202202262304835205
  • ホウ酸輸送体BOR1の偏在と分解を変調するPolarin化合物群の探索と作用機序の解析               
    吉成晃; 佐藤綾人; ウォルフ フロマー; ウォルフ フロマー; 中村匡良
    Volume:68, 2022
    ISSN:2424-0575, J-Global ID:202302257178514350
  • Molecular mechanisms of microtubule nucleation in plant cells               
    八木慎宜; 加藤壮英; 松永幸大; EHRHARDT David; 橋本隆; 中村匡良
    日本植物生理学会年会(Web), Volume:63rd, 2022
    J-Global ID:202202217754238942
  • 化学遺伝学による栄養素輸送体の極性局在機構の解明               
    吉成晃; 佐藤綾人; FROMMER Wolf; FROMMER Wolf; FROMMER Wolf; 中村匡良
    Volume:67, 2021
    ISSN:2424-0575, J-Global ID:202202234846392494
  • Mass spectrometry imaging of mono and disaccharides in rice ovule using ionization-assisting substrates DIUTHAME               
    川村友理子; 吉成晃; 中村匡良; FROMMER Wolf B.; 大村孝幸; 小谷政弘; 内藤康秀; 桑田啓子
    質量分析総合討論会講演要旨集, Volume:68th, 2020
    J-Global ID:202002243557847963
  • イオン化支援基盤DIUTHAMEを用いたイメージング質量分析による,イネ胚珠における糖の分布の解析               
    川村友理子; 吉成晃; 中村匡良; FROMMER Wolf B.; 大村孝幸; 小谷政弘; 内藤康秀; 桑田啓子
    Volume:92nd, 2019
    J-Global ID:202002291833565862
  • Arabidopsis Msd1 and WDR8 are required for nascent microtubule release from nucleation sites               
    八木慎宜; 濱田隆宏; 中村匡良; 川口麻由美; 加藤壮英; 松永幸大; 橋本隆
    Plant Morphology, Volume:28, Number:1, 2016
    ISSN:0918-9726, J-Global ID:201902254954655614
  • 微小管形成開始部位に局在するシロイヌナズナ新規MAPsの機能解析               
    加藤壮英; 濱田隆宏; 中村匡良; 八木慎宜; 川口摩悠美; 橋本隆
    Volume:54th, 2013
    J-Global ID:201302217717400422
  • A plastidial sodium-dependent pyruvate transporter (vol 476, pg 472, 2011)               
    Tsuyoshi Furumoto; Teppei Yamaguchi; Yumiko Ohshima-Ichie; Masayoshi Nakamura; Yoshiko Tsuchida-Iwata; Masaki Shimamura; Junichi Ohnishi; Shingo Hata; Udo Gowik; Peter Westhoff; Andrea Braeutigam; Andreas P. M. Weber; Katsura Izui
    NATURE, Volume:478, Number:7368, First page:274, Last page:274, Oct. 2011
    English, Others
    DOI:https://doi.org/10.1038/nature10518
    DOI ID:10.1038/nature10518, ISSN:0028-0836, Web of Science ID:WOS:000295782800057
  • NIMA関連キナーゼは相互作用し,微小管機能を介して細胞成長方向を制御する。               
    本瀬宏康; 濱田隆宏; 中村匡良; 加藤壮英; 村田隆; 渡辺雄一郎; 橋本隆; 酒井達也; 高橋卓
    Volume:51st, 2010
    J-Global ID:201002219502794277
  • シロイヌナズナNIMAカイネースの機能               
    本瀬宏康; 濱田隆宏; 中村匡良; 加藤壮英; 橋本隆; 酒井達也; 渡辺雄一郎
    Volume:50th, 2009
    J-Global ID:200902202954017137
■ Lectures, oral presentations, etc.
  • Live-cell imaging of plant nucleus using phytochrome-derived autofluorescence               
    Akira Yoshinari; Reika Isoda; Noriyoshi Yagi; Wolf B. Frommer; Masayoshi Nakamura
    American Society of Plant Biology 2025, Jun. 2025
  • Investigating microtubule nucleation apparatus in plant cells               
    Masayoshi Nakamura
    EMBL Symposium, Microtubules: from atoms to complex systems
    Jun. 2024 - Jun. 2024, Oral presentation
  • SWEET transporter: physiological function and its agricultural use               
    Masayoshi Nakamura
    The 18th Annual meeting of the Japan Transporter Research Association, [Invited]
    Jun. 2024 - Jun. 2024, Invited oral presentation
  • Elucidating molecular mechanism of microtubule nucleation, severing, and regulation of microtubule dynamics during the organization of cortical microtubule arrays in plants               
    Masayoshi Nakamura
    The 49th NAITO Conference on Frontiers of Microtubule and Its-related Motors: Atomic Structures, Cellular Functions, Development and Diseases, [Invited]
    Jul. 2023 - Jul. 2023, Invited oral presentation
  • Mechanical insights into plant chiral growth through twisted mutant analysis               
    Masayoshi Nakamura
    Yamada Conference LXXV Origin of left-right asymmetry in animals, [Invited]
    Jan. 2023 - Jan. 2023, Invited oral presentation
  • SWEET transporter: physiological functions and its agricultural use               
    Masayoshi Nakamura
    The 45th Molecular Biology Society of Japan, [Invited]
    Nov. 2022 - Dec. 2022, Invited oral presentation
  • Mechanical insights into plant chiral growth through twisted mutant analysis               
    Masayoshi Nakamura
    Dec. 2021, [Invited]
  • Movement in plants               
    Masayoshi Nakamura
    Science Japan Meeting 2021, Apr. 2021, [Invited]
  • Chirality in Plants               
    Masayoshi Nakamura; Takashi Hashimoto
    Dec. 2020, [Invited]
  • Mechanisms for Reorientation of Cortical Microtubule Arrays in Response to Blue Light               
    Masayoshi Nakamura
    1st PSC Advanced Microscopic Imaging Symposium, Aug. 2018, [Invited]
    English
  • Microtubule dynamics in response to blue light               
    Masayoshi Nakamura
    The 81st Annual Meeting of the Botanical Society of Japan, Sep. 2017, [Invited]
    Japanese
■ Affiliated academic society
  • THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS
■ Research projects
  • 植物の形態を支える微小管形成機構の分子基盤               
    01 Apr. 2023 - 31 Mar. 2026
    Grant amount(Total):18720000, Direct funding:14400000, Indirect funding:4320000
    Grant number:23K27166
  • Functional relationship between microtubule nucleation and severing in plant cell division               
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Grant-in-Aid for Challenging Research (Exploratory), 30 Jul. 2020 - 31 Mar. 2023
    Nakamura Masayoshi, Nagoya University
    Grant amount(Total):6500000, Direct funding:5000000, Indirect funding:1500000
    The regulation of cell division, primarily regulated by microtubules, is crucial for the plant growth and development. The mechanism underlying the assembly and disassembly of microtubule structures in plant cells remains unknown. In this research, we attempted to establish a technique to impede protein function during live cell imaging. Through the utilization of the lt-degron system, which facilitates protein degradation at low temperatures, we successfully diminished microtubule nucleating factors. This innovative integration of technology with live cell imaging provides a promising tool for analyzing the spatiotemporal function of proteins.
    Grant number:20K21424
  • Mechanical manipulation and in vitro reconstitution of microtubule severing               
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Fund for the Promotion of Joint International Research (Fostering Joint International Research (B)), 09 Oct. 2018 - 31 Mar. 2023
    Nagoya University
    Grant amount(Total):17940000, Direct funding:13800000, Indirect funding:4140000
    Grant number:18KK0195
TOP