中村 匡良(ナカムラ マサヨシ)
理工学研究科 生命科学部門教授(特定プロジェクト教員)
理学部 分子生物学科

研究者情報

■ 研究キーワード
  • 細胞骨格
  • 微小管
  • ライブセルイメージング
  • シロイヌナズナ
  • 左右性
  • SWEET輸送体
■ 研究分野
  • ライフサイエンス, 植物分子、生理科学
■ 経歴
  • 2025年04月 - 現在, 埼玉大学, 大学院理工学研究科, 教授 (特定プロジェクト教員)
  • 2025年04月 - 現在, 名古屋大学, トランスフォーマティブ生命分子研究所, 客員教授
  • 2021年11月 - 2025年03月, 名古屋大学, トランスフォーマティブ生命分子研究所, 特任准教授
  • 2017年04月 - 2021年10月, 名古屋大学, トランスフォーマティブ生命分子研究所, 特任講師
  • 2011年04月 - 2017年03月, Carnegie Institution for Science, Department of Plant Biology, Postdoctoral fellow
  • 2012年04月 - 2015年09月, Carnegie Institution for Science, Department of Plant Biology, Human Frontier Science Program Postdoctoral Fellowship, アメリカ合衆国
  • 2009年04月 - 2011年03月, 奈良先端科学技術大学院大学, バイオサイエンス研究科, 博士研究員
■ 学歴
  • 2009年, 奈良先端科学技術大学院大学, バイオサイエンス研究科, 日本国
  • 2003年, 京都大学, 農学部, 生物生産科学科, 日本国
■ 受賞
  • 2017年, Career Development Award, Human Frontier Science Program
    中村 匡良
  • 2014年, Tansley Medal, Finalist, New Phytologist
    中村 匡良

業績情報

■ 論文
  • Fertilization-dependent phloem end gate regulates seed size               
    Xiaoyan Liu; Kohdai P. Nakajima; Prakash Babu Adhikari; Xiaoyan Wu; Shaowei Zhu; Kentaro Okada; Tomoko Kagenishi; Ken-ichi Kurotani; Takashi Ishida; Masayoshi Nakamura; Yoshikatsu Sato; Yaichi Kawakatsu; Liyang Xie; Chen Huang; Jiale He; Ken Yokawa; Shinichiro Sawa; Tetsuya Higashiyama; Kent J. Bradford; Michitaka Notaguchi; Ryushiro D. Kasahara
    Current Biology, 2025年04月, [査読有り]
    Elsevier BV, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1016/j.cub.2025.03.033
    DOI ID:10.1016/j.cub.2025.03.033, ISSN:0960-9822
  • Near-Infrared Autofluorescence Imaging of Nuclei in Living Plant Roots               
    Akira Yoshinari; Masayoshi Nakamura
    BIO-PROTOCOL, 巻:15, 号:1369, 2025年, [査読有り], [最終著者, 責任著者]
    Bio-Protocol, LLC, 研究論文(学術雑誌)
    DOI:https://doi.org/10.21769/bioprotoc.5274
    DOI ID:10.21769/bioprotoc.5274, ISSN:2331-8325
  • Plant microtubule nucleating apparatus and its potential signaling pathway               
    Noriyoshi Yagi; Satoshi Fujita; Masayoshi Nakamura
    Current Opinion in Plant Biology, 号:82, 開始ページ:102624, 2024年12月, [査読有り], [最終著者, 責任著者]
    研究論文(学術雑誌)
    DOI:https://doi.org/10.1016/j.pbi.2024.102624
    DOI ID:10.1016/j.pbi.2024.102624, ORCID:166739855
  • Identification of nuclear pore proteins at plasmodesmata               
    T. Moritz Schladt; Manuel Miras; Jona Obinna Ejike; Mathieu Pottier; Lin Xi; Andrea Restrepo-Escobar; Masayoshi Nakamura; Niklas Pütz; Sebastian Hänsch; Chen Gao; Julia Engelhorn; Marcel Dickmanns; Gwendolyn V. Davis; Ahan Dalal; Sven Gombos; Ronja Lange; Rüdiger Simon; Waltraud X. Schulze; Wolf B. Frommer
    2024年09月
    DOI:https://doi.org/10.1101/2024.09.02.610746
    DOI ID:10.1101/2024.09.02.610746, ORCID:166924311
  • Water-soluble aromatic nanobelt with unique cellular internalization
    Konstantin Günther; Hideya Kono; Hiroki Shudo; Reika Isoda; Masayoshi Nakamura; Akiko Yagi; Kazuma Amaike; Kenichiro Itami
    号:64, 開始ページ:e202414645, 2024年07月, [査読有り]
    A water-soluble aromatic nanobelt was synthesized, and its cellular uptake behavior in HeLa cells was investigated. The late-stage functionalization of the parent methylene-bridged [6]cycloparaphenylene ([6]MCPP) provided an easily accessible alkyne-functionalized nanobelt in a single reaction step. The alkyne-substituted [6]MCPP was subjected to Cu-catalyzed azide-alkyne cycloaddition by using a dye-attached azide to obtain a water-soluble aromatic nanobelt. Cell-imaging experiments on the synthesized nanobelt in HeLa cells revealed stop-and-go cellular uptake dynamics. Similar experiments with control molecules and theoretical studies indicated that the unique dynamics of the nanobelt was derived from the belt-shaped structure.
    American Chemical Society (ACS)
    DOI:https://doi.org/10.26434/chemrxiv-2024-vv4nb
    DOI ID:10.26434/chemrxiv-2024-vv4nb
  • Near‐infrared imaging of phytochrome‐derived autofluorescence in plant nuclei               
    Akira Yoshinari; Reika Isoda; Noriyoshi Yagi; Yoshikatsu Sato; Jelmer J. Lindeboom; David W. Ehrhardt; Wolf B. Frommer; Masayoshi Nakamura
    The Plant Journal, 2024年06月, [査読有り], [最終著者, 責任著者]
    研究論文(学術雑誌)
    DOI:https://doi.org/10.1111/tpj.16699
    DOI ID:10.1111/tpj.16699, ORCID:155940811
  • Loss-of-function mutation in the polyamine transporter geneOsLAT5as a selectable marker for genome editing               
    Kyrylo Schenstnyi; Zhengzhi Zhang; Bo Liu; Masayoshi Nakamura; Van Schepler-Luu; Eliza P.I. Loo; Bing Yang; Wolf B. Frommer
    2023年12月
    DOI:https://doi.org/10.1101/2023.12.12.571390
    DOI ID:10.1101/2023.12.12.571390, ORCID:148683583
  • Seed size control via phloem end by callose deposition/degradation of β-1,3-glucanase
    Xiaoyan Liu; Kohdai P Nakajima; Xiaoyan Wu; Shaowei Zhu; Prakash Babu Adhikari; Kentaro Okada; Kenichi Kurotani; Takashi Ishida; Masayoshi Nakamura; Yoshikatsu Sato; Liyang Xie; Chen Huang; Jiale He; Shinichiro Sawa; Tetsuya Higashiyama; Michitaka Notaguchi; Ryushiro Dora Kasahara
    2023年07月
    Seed formation is crucial for lives of plants as well as humans; however, the mechanisms governing seed size require further investigation. Here, we present a new mechanism to modify the seed size by the newly identified phloem end that support nutrient transport, at the chalazal end of the ovule, however, blocked by callose deposition. Callose is removed after central cell fertilization (open state), allowing nutrients to be transported to the seed. However, if fertilization fails, callose deposition persists (closed state), preventing the phloem end from transporting nutrients. β-1,3-glucanase genes, including putative plasmodesmata-associated proteins (AtBG_ppap), were identified as regulators of callose removal. The Atbg_ppap mutant had the phloem end in the closed state and produced smaller seeds due to incomplete callose degradation. In contrast, the AtBG_ppap overexpression line produced larger seeds than the wild type due to continuous callose degradation, indicating that the phloem end regulates substance flow via callose deposition/degradation.
    Cold Spring Harbor Laboratory
    DOI:https://doi.org/10.1101/2023.07.23.550179
    DOI ID:10.1101/2023.07.23.550179
  • SWEET13 transport of sucrose, but not gibberellin, restores male fertility in Arabidopsis sweet13;14               
    Reika Isoda; Zoltan Palmai; Akira Yoshinari; Li-Qing Chen; Florence Tama; Wolf B. Frommer; Masayoshi Nakamura
    Proceedings of the National Academy of Sciences, 巻:119, 号:42, 開始ページ:e2207558119, 2022年10月, [査読有り], [最終著者, 責任著者], [国際誌]
    SWEET sucrose transporters play important roles in the allocation of sucrose in plants. Some SWEETs were shown to also mediate transport of the plant growth regulator gibberellin (GA). The close physiological relationship between sucrose and GA raised the questions of whether there is a functional connection and whether one or both of the substrates are physiologically relevant. To dissect these two activities, molecular dynamics were used to map the binding sites of sucrose and GA in the pore of SWEET13 and predicted binding interactions that might be selective for sucrose or GA. Transport assays confirmed these predictions. In transport assays, the N76Q mutant had 7x higher relative GA 3 activity, and the S142N mutant only transported sucrose. The impaired pollen viability and germination in sweet13;14 double mutants were complemented by the sucrose-selective SWEET13 S142N , but not by the SWEET13 N76Q mutant, indicating that sucrose is the physiologically relevant substrate and that GA transport capacity is dispensable in the context of male fertility. Therefore, GA supplementation to counter male sterility may act indirectly via stimulating sucrose supply in male sterile mutants. These findings are also relevant in the context of the role of SWEETs in pathogen susceptibility.
    Proceedings of the National Academy of Sciences, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1073/pnas.2207558119
    DOI ID:10.1073/pnas.2207558119, ISSN:0027-8424, eISSN:1091-6490, PubMed ID:36215460, PubMed Central ID:PMC9586311
  • OsSWEET11b, a potential sixth leaf blight susceptibility gene involved in sugar transport‐dependent male fertility               
    Lin‐Bo Wu; Joon‐Seob Eom; Reika Isoda; Chenhao Li; Si Nian Char; Dangping Luo; Van Schepler‐Luu; Masayoshi Nakamura; Bing Yang; Wolf B. Frommer
    New Phytologist, 巻:234, 号:3, 開始ページ:975, 終了ページ:989, 2022年05月, [査読有り]
    Wiley, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1111/nph.18054
    DOI ID:10.1111/nph.18054, ORCID:109746610
  • Finding a right place to cut: How katanin is targeted to cellular severing sites               
    Masayoshi Nakamura; Noriyoshi Yagi; Takashi Hashimoto
    Quantitative Plant Biology, 巻:3, 2022年, [査読有り], [筆頭著者, 責任著者]
    Cambridge University Press ({CUP}), 研究論文(学術雑誌)
    DOI:https://doi.org/10.1017/qpb.2022.2
    DOI ID:10.1017/qpb.2022.2, ORCID:111357685
  • An anchoring complex recruits katanin for microtubule severing at the plant cortical nucleation sites
    Noriyoshi Yagi; Takehide Kato; Sachihiro Matsunaga; David W. Ehrhardt; Masayoshi Nakamura; Takashi Hashimoto
    Nature Communications, 巻:12, 号:1, 2021年12月, [査読有り], [責任著者]
    AbstractMicrotubules are severed by katanin at distinct cellular locations to facilitate reorientation or amplification of dynamic microtubule arrays, but katanin targeting mechanisms are poorly understood. Here we show that a centrosomal microtubule-anchoring complex is used to recruit katanin in acentrosomal plant cells. The conserved protein complex of Msd1 (also known as SSX2IP) and Wdr8 is localized at microtubule nucleation sites along the microtubule lattice in interphase Arabidopsis cells. Katanin is recruited to these sites for efficient release of newly formed daughter microtubules. Our cell biological and genetic studies demonstrate that Msd1-Wdr8 acts as a specific katanin recruitment factor to cortical nucleation sites (but not to microtubule crossover sites) and stabilizes the association of daughter microtubule minus ends to their nucleation sites until they become severed by katanin. Molecular coupling of sequential anchoring and severing events by the evolutionarily conserved complex renders microtubule release under tight control of katanin activity.
    Springer Science and Business Media {LLC}, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1038/s41467-021-24067-y
    DOI ID:10.1038/s41467-021-24067-y, eISSN:2041-1723, ORCID:95634742
  • Designs, applications, and limitations of genetically encoded fluorescent sensors to explore plant biology               
    Mayuri Sadoine; Yuuma Ishikawa; Thomas J. Kleist; Michael M. Wudick; Masayoshi Nakamura; Guido Grossmann; Wolf B. Frommer; Cheng-Hsun Ho
    Plant Physiology, 巻:187, 号:2, 開始ページ:485, 終了ページ:503, 2021年10月, [査読有り]
    Oxford University Press ({OUP}), 研究論文(学術雑誌)
    DOI:https://doi.org/10.1093/plphys/kiab353
    DOI ID:10.1093/plphys/kiab353, ORCID:101065356
  • Advances in Synthetic Fluorescent Probe Labeling for Live Cell Imaging in Plants               
    Noriyoshi Yagi; Akira Yoshinari; Ryu J Iwatate; Reika Isoda; Wolf B Frommer; Masayoshi Nakamura
    Plant and Cell Physiology, 2021年07月, [査読有り], [最終著者, 責任著者], [国内誌]
    Fluorescent probes are a powerful tool for visualizing cellular and subcellular structures, their dynamics, and cellular molecules in living cells, and enables us to monitor cellular processes in a spatio-temporal manner within complex and crowded systems. In addition to popular fluorescent proteins, a wide variety of small-molecule dyes have been synthesized through close association with the interdisciplinary field of chemistry and biology, ranging from those suitable for labeling cellular compartments such as organelles to those for labeling intracellular biochemical and biophysical processes and signaling. In recent years, self-labeling technologies including the SNAP-tag system have allowed us to attach these dyes to cellular domains or specific proteins, and are beginning to be employed in plant studies. In this mini review, we will discuss the current range of synthetic fluorescent probes that have been exploited for live cell imaging and the recent advances in the application that enable genetical tagging of synthetic probes in plant research.
    Oxford University Press ({OUP}), 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1093/pcp/pcab104
    DOI ID:10.1093/pcp/pcab104, ORCID:96678142, PubMed ID:34233356
  • Sensors for the quantification, localization and analysis of the dynamics of plant hormones               
    Reika Isoda; Akira Yoshinari; Yuuma Ishikawa; Mayuri Sadoine; Rüdiger Simon; Wolf B. Frommer; Masayoshi Nakamura
    The Plant Journal, 巻:105, 号:2, 開始ページ:542, 終了ページ:557, 2021年01月, [査読有り], [最終著者, 責任著者], [国際誌]
    Plant hormones play important roles in plant growth and development and physiology, and in acclimation to environmental changes. The hormone signaling networks are highly complex and interconnected. It is thus important to not only know where the hormones are produced, how they are transported and how and where they are perceived, but also to monitor their distribution quantitatively, ideally in a non-invasive manner. Here we summarize the diverse set of tools available for quantifying and visualizing hormone distribution and dynamics. We provide an overview over the tools that are currently available, including transcriptional reporters, degradation sensors, and luciferase and fluorescent sensors, and compare the tools and their suitability for different purposes.
    Wiley, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1111/tpj.15096
    DOI ID:10.1111/tpj.15096, ORCID:84065697, PubMed ID:33231903, PubMed Central ID:PMC7898640
  • Using Genetically Encoded Fluorescent Biosensors for Quantitative In Vivo Imaging               
    Akira Yoshinari; Jacob Moe-Lange; Thomas J. Kleist; Heather N. Cartwright; David A. Quint; David W. Ehrhardt; Wolf B. Frommer; Masayoshi Nakamura
    Methods in Molecular Biology, 巻:2200, 開始ページ:303, 終了ページ:322, 2021年, [査読有り], [最終著者, 責任著者], [国際誌]
    Fluorescent biosensors are powerful tools for tracking analytes or cellular processes in live organisms and allowing visualization of the spatial and temporal dynamics of cellular regulators. Fluorescent protein (FP)-based biosensors are extensively employed due to their high selectivity and low invasiveness. A variety of FP-based biosensors have been engineered and applied in plant research to visualize dynamic changes in pH, redox state, concentration of molecules (ions, sugars, peptides, ATP, reactive oxygen species, and phytohormones), and activity of transporters. In this chapter, we briefly summarize reported uses of FP-based biosensors in planta and show simple methods to monitor the dynamics of intracellular Ca2+ in Arabidopsis thaliana using a ratiometric genetically encoded Ca2+ indicator, MatryoshCaMP6s.
    Springer US, 英語, 論文集(書籍)内論文
    DOI:https://doi.org/10.1007/978-1-0716-0880-7_14
    DOI ID:10.1007/978-1-0716-0880-7_14, ISSN:1064-3745, eISSN:1940-6029, PubMed ID:33175384
  • Mechanistic Insights into Plant Chiral Growth
    Masayoshi Nakamura; Takashi Hashimoto
    Symmetry, 2020年12月, [査読有り], [筆頭著者, 責任著者]
    研究論文(学術雑誌)
    DOI:https://doi.org/10.3390/sym12122056
    DOI ID:10.3390/sym12122056, ORCID:85333165
  • The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple
    Qian Peng; Yaming Cai; Enhui Lai; Masayoshi Nakamura; Liao Liao; Beibei Zheng; Collins Ogutu; Sylvia Cherono; Yuepeng Han
    BMC Plant Biology, 巻:20, 号:1, 2020年12月, [査読有り]
    Springer Science and Business Media {LLC}, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1186/s12870-020-02406-3
    DOI ID:10.1186/s12870-020-02406-3, ISSN:1471-2229, eISSN:1471-2229, ORCID:83175808
  • Covalent Self-Labeling of Tagged Proteins with Chemical Fluorescent Dyes in BY-2 Cells and Arabidopsis Seedlings
    Ryu J. Iwatate; Akira Yoshinari; Noriyoshi Yagi; Marek Grzybowski; Hiroaki Ogasawara; Mako Kamiya; Toru Komatsu; Masayasu Taki; Shigehiro Yamaguchi; Wolf B. Frommer; Masayoshi Nakamura
    The Plant Cell, 巻:32, 号:10, 開始ページ:3081, 終了ページ:3094, 2020年10月, [査読有り], [責任著者]
    American Society of Plant Biologists ({ASPB}), 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1105/tpc.20.00439
    DOI ID:10.1105/tpc.20.00439, ISSN:1532-298X, eISSN:1532-298X, ORCID:83175786
  • A Novel Katanin-Tethering Machinery Accelerates Cytokinesis               
    Takema Sasaki; Motosuke Tsutsumi; Kohei Otomo; Takashi Murata; Noriyoshi Yagi; Masayoshi Nakamura; Tomomi Nemoto; Mitsuyasu Hasebe; Yoshihisa Oda
    Current Biology, 巻:29, 号:23, 開始ページ:4060, 終了ページ:4070.e3, 2019年12月, [査読有り]
    Elsevier {BV}, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1016/j.cub.2019.09.049
    DOI ID:10.1016/j.cub.2019.09.049, ISSN:0960-9822, ORCID:83175826
  • CLASP stabilization of plus ends created by severing promotes microtubule creation and reorientation
    Jelmer J. Lindeboom; Masayoshi Nakamura; Marco Saltini; Anneke Hibbel; Ankit Walia; Tijs Ketelaar; Anne Mie C. Emons; John C. Sedbrook; Viktor Kirik; Bela M. Mulder; David W. Ehrhardt
    Journal of Cell Biology, 巻:218, 号:1, 開始ページ:190, 終了ページ:205, 2019年01月, [査読有り], [筆頭著者]
    Central to the building and reorganizing cytoskeletal arrays is creation of new polymers. Although nucleation has been the major focus of study for microtubule generation, severing has been proposed as an alternative mechanism to create new polymers, a mechanism recently shown to drive the reorientation of cortical arrays of higher plants in response to blue light perception. Severing produces new plus ends behind the stabilizing GTP-cap. An important and unanswered question is how these ends are stabilized in vivo to promote net microtubule generation. Here we identify the conserved protein CLASP as a potent stabilizer of new plus ends created by katanin severing in plant cells. Clasp mutants are defective in cortical array reorientation. In these mutants, both rescue of shrinking plus ends and the stabilization of plus ends immediately after severing are reduced. Computational modeling reveals that it is the specific stabilization of severed ends that best explains CLASP’s function in promoting microtubule amplification by severing and array reorientation.
    Rockefeller University Press, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1083/jcb.201805047
    DOI ID:10.1083/jcb.201805047, ISSN:0021-9525, eISSN:1540-8140, ORCID:49993591
  • SPR2 protects minus ends to promote severing and reorientation of plant cortical microtubule arrays
    Masayoshi Nakamura; Jelmer J. Lindeboom; Marco Saltini; Bela M. Mulder; David W. Ehrhardt
    Journal of Cell Biology, 巻:217, 号:3, 開始ページ:915, 終了ページ:927, 2018年03月, [査読有り], [筆頭著者]
    The cortical microtubule arrays of higher plants are organized without centrosomes and feature treadmilling polymers that are dynamic at both ends. The control of polymer end stability is fundamental for the assembly and organization of cytoskeletal arrays, yet relatively little is understood about how microtubule minus ends are controlled in acentrosomal microtubule arrays, and no factors have been identified that act at the treadmilling minus ends in higher plants. Here, we identify Arabidopsis thaliana SPI RAL2 (SPR2) as a protein that tracks minus ends and protects them against subunit loss. SPR2 function is required to facilitate the rapid reorientation of plant cortical arrays as stimulated by light perception, a process that is driven by microtubule severing to create a new population of microtubules. Quantitative live-cell imaging and computer simulations reveal that minus protection by SPR2 acts by an unexpected mechanism to promote the lifetime of potential SPR2 severing sites, increasing the likelihood of severing and thus the rapid amplification of the new microtubule array.
    Rockefeller University Press, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1083/jcb.201708130
    DOI ID:10.1083/jcb.201708130, ISSN:1540-8140, ORCID:40637131, SCOPUS ID:85042864403
  • Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues               
    Nakamura, Masayoshi
    New Phytologist, 巻:205, 号:3, 開始ページ:1022, 終了ページ:1027, 2015年, [査読有り], [責任著者]
    In higher plants, reorientation of cortical microtubule arrays has been postulated to be of importance for modifying cell growth to adapt to environmental conditions. However, the process of microtubule reorientation is largely unknown. Recent genetic and live cell imaging studies of microtubule dynamics shed light on the regulatory mechanisms of microtubule molecular nucleation and severing apparatuses, which are required for array reorientation in response to blue light signaling. Branching nucleation from -tubulin complexes creates a small population of discordant microtubules that are acted on by KATANIN-mediated severing in two ways. KATANIN releases microtubules from nucleation sites and rapidly amplifies discordant microtubules by severing at microtubule crossovers. In this review, I focus on the molecular details of these two enzymes, which enable microtubule array transition.
    WILEY-BLACKWELL, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1111/nph.12932
    DOI ID:10.1111/nph.12932, ISSN:0028-646X, eISSN:1469-8137, ORCID:36106191, Web of Science ID:WOS:000348730600012
  • GCP-WD Mediates gamma-TuRC Recruitment and the Geometry of Microtubule Nucleation in Interphase Arrays of Arabidopsis               
    Walia, Ankit; Nakamura, Masayoshi; Moss, Dorianne; Kirik, Viktor; Hashimoto, Takashi; Ehrhardt, David W.
    Current Biology, 巻:24, 号:21, 開始ページ:2548, 終了ページ:2555, 2014年, [査読有り]
    Many differentiated animal cells, and all higher plant cells, build interphase microtubule arrays of specific architectures without benefit of a central organizer, such as a centrosome, to control the location and geometry of microtubule nucleation. These acentrosomal arrays support essential cell functions such as morphogenesis [1, 2], but the mechanisms by which the new microtubules are positioned and oriented are poorly understood. In higher plants, nucleation of microtubules arises from distributed gamma-tubulin ring complexes (gamma-TuRCs) at the cell cortex that are associated primarily with existing microtubules [3-5] and from which new microtubules are nucleated in a geometrically bimodal fashion, either in parallel to the mother microtubule or as a branching event at a mean angle of approximately 40 degrees to the mother microtubule. By imaging the dynamics of individual nucleation events in Arabidopsis, we found that a conserved peripheral protein of the gamma-TuRC, GCP-WD/NEDD1 [6-8], associated with motile gamma-TuRCs and localized to nucleation events. Knockdown of this essential protein resulted in reduction of gamma-TuRC recruitment to cortical microtubules and total nucleation frequency, showing that GCP-WD controls gamma-TuRC positioning and function in these interphase arrays. Further, we discovered an unexpected role for GCP-WD in determining the geometry of microtubule-dependent microtubule nucleation, where it acts to increase the likelihood of branching over parallel nucleation. Cells with normally complex patterns of cortical array organization constructed simpler arrays with cell-wide ordering, suggesting that control of nucleation frequency, positioning, and geometry by GCP-WD allows plant cells to build alternative cortical array architectures.
    CELL PRESS, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1016/j.cub.2014.09.013
    DOI ID:10.1016/j.cub.2014.09.013, ISSN:0960-9822, eISSN:1879-0445, ORCID:36106192, Web of Science ID:WOS:000344171500026
  • A Mechanism for Reorientation of Cortical Microtubule Arrays Driven by Microtubule Severing               
    Lindeboom, Jelmer J.; Nakamura, Masayoshi; Hibbel, Anneke; Shundyak, Kostya; Gutierrez, Ryan; Ketelaar, Tijs; Emons, Anne Mie C.; Mulder, Bela M.; Kirik, Viktor; Ehrhardt, David W.
    Science, 巻:342, 号:6163, 開始ページ:1202, 終了ページ:+, 2013年, [査読有り]
    Environmental and hormonal signals cause reorganization of microtubule arrays in higher plants, but the mechanisms driving these transitions have remained elusive. The organization of these arrays is required to direct morphogenesis. We discovered that microtubule severing by the protein katanin plays a crucial and unexpected role in the reorientation of cortical arrays, as triggered by blue light. Imaging and genetic experiments revealed that phototropin photoreceptors stimulate katanin-mediated severing specifically at microtubule intersections, leading to the generation of new microtubules at these locations. We show how this activity serves as the basis for a mechanism that amplifies microtubules orthogonal to the initial array, thereby driving array reorientation. Our observations show how severing is used constructively to build a new microtubule array.
    AMER ASSOC ADVANCEMENT SCIENCE, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1126/science.1245533
    DOI ID:10.1126/science.1245533, ISSN:0036-8075, eISSN:1095-9203, ORCID:36106193, Web of Science ID:WOS:000327857900038
  • RNA Processing Bodies, Peroxisomes, Golgi Bodies, Mitochondria, and Endoplasmic Reticulum Tubule Junctions Frequently Pause at Cortical Microtubules               
    Hamada, Takahiro; Tominaga, Motoki; Fukaya, Takashi; Nakamura, Masayoshi; Nakano, Akihiko; Watanabe, Yuichiro; Hashimoto, Takashi; Baskin, Tobias I.
    Plant and Cell Physiology, 巻:53, 号:4, 開始ページ:699, 終了ページ:708, 2012年, [査読有り]
    Organelle motility, essential for cellular function, is driven by the cytoskeleton. In plants, actin filaments sustain the long-distance transport of many types of organelles, and microtubules typically fine-tune the motile behavior. In shoot epidermal cells of Arabidopsis thaliana seedlings, we show here that a type of RNA granule, the RNA processing body (P-body), is transported by actin filaments and pauses at cortical microtubules. Interestingly, removal of microtubules does not change the frequency of P-body pausing. Similarly, we show that Golgi bodies, peroxisomes, and mitochondria all pause at microtubules, and again the frequency of pauses is not appreciably changed after microtubules are depolymerized. To understand the basis for pausing, we examined the endoplasmic reticulum (ER), whose overall architecture depends on actin filaments. By the dual observation of ER and microtubules, we find that stable junctions of tubular ER occur mainly at microtubules. Removal of microtubules reduces the number of stable ER tubule junctions, but those remaining are maintained without microtubules. The results indicate that pausing on microtubules is a common attribute of motile organelles but that microtubules are not required for pausing. We suggest that pausing on microtubules facilitates interactions between the ER and otherwise translocating organelles in the cell cortex.
    OXFORD UNIV PRESS, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1093/pcp/pcs025
    DOI ID:10.1093/pcp/pcs025, ISSN:0032-0781, eISSN:1471-9053, ORCID:36106195, Web of Science ID:WOS:000302809300010
  • Arabidopsis GCP3-interacting protein 1/MOZART 1 is an integral component of the gamma-tubulin-containing microtubule nucleating complex               
    Nakamura, Masayoshi; Yagi, Noriyoshi; Kato, Takehide; Fujita, Satoshi; Kawashima, Noriyuki; Ehrhardt, David W.; Hashimoto, Takashi
    Plant Journal, 巻:71, 号:2, 開始ページ:216, 終了ページ:225, 2012年, [査読有り], [筆頭著者]
    Microtubules in eukaryotic cells are nucleated from ring-shaped complexes that contain ?-tubulin and a family of homologous ?-tubulin complex proteins (GCPs), but the subunit composition of the complexes can vary among fungi, animals and plants. Arabidopsis GCP3-interacting protein 1 (GIP1), a small protein with no homology to the GCP family, interacts with GCP3 in vitro, and is a plant homolog of vertebrate mitotic-spindle organizing protein associated with a ring of ?-tubulin 1 (MOZART1), a recently identified component of the ?-tubulin complex in human cell lines. In this study, we characterized two closely related Arabidopsis GIP1s: GIP1a and GIP1b. Single mutants of gip1a and gip1b were indistinguishable from wild-type plants, but their double mutant was embryonic lethal, and showed impaired development of male gametophytes. Functional fusions of GIP1a with green fluorescent protein (GFP) were used to purify GIP1a-containing complexes from Arabidopsis plants, which contained all the subunits (except NEDD1) previously identified in the Arabidopsis ?-tubulin complexes. GIP1a and GIP1b interacted specifically with Arabidopsis GCP3 in yeast. GFP-GIP1a labeled mitotic microtubule arrays in a pattern largely consistent with, but partly distinct from, the localization of the ?-tubulin complex containing GCP2 or GCP3 in planta. In interphase cortical arrays, the labeled complexes were preferentially recruited to existing microtubules, from which new microtubules were efficiently nucleated. However, in contrast to complexes labeled with tagged GCP2 or GCP3, their recruitment to cortical areas with no microtubules was rarely observed. These results indicate that GIP1/MOZART1 is an integral component of a subset of the Arabidopsis ?-tubulin complexes.
    WILEY-BLACKWELL, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1111/j.1365-313X.2012.04988.x
    DOI ID:10.1111/j.1365-313X.2012.04988.x, ISSN:0960-7412, ORCID:36106194, Web of Science ID:WOS:000306893400004
  • A plastidial sodium-dependent pyruvate transporter               
    Furumoto, Tsuyoshi; Yamaguchi, Teppei; Ohshima-Ichie, Yumiko; Nakamura, Masayoshi; Tsuchida-Iwata, Yoshiko; Shimamura, Masaki; Ohnishi, Junichi; Hata, Shingo; Gowik, Udo; Westhoff, Peter; Braeutigam, Andrea; Weber, Andreas P. M.; Izui, Katsura
    Nature, 巻:476, 号:7361, 開始ページ:472, 終了ページ:U131, 2011年, [査読有り]
    Pyruvate serves as a metabolic precursor for many plastid-localized biosynthetic pathways, such as those for fatty acids(1), terpenoids(2) and branched-chainamino acids(3). In spite of the importance of pyruvate uptake into plastids (organelles within cells of plants and algae), the molecular mechanisms of this uptake have not yet been explored. This is mainly because pyruvate is a relatively small compound that is able to passively permeate lipid bilayers(4), which precludes accurate measurement of pyruvate transport activity in reconstituted liposomes. Using differential transcriptome analyses of C(3) and C(4) plants of the genera Flaveria and Cleome, here we have identified a novel gene that is abundant in C(4) species, named BASS2 (BILE ACID:SODIUM SYMPORTER FAMILY PROTEIN 2). The BASS2 protein is localized at the chloroplast envelope membrane, and is highly abundant in C(4) plants that have the sodium-dependent pyruvate transporter. Recombinant BASS2 shows sodium-dependent pyruvate uptake activity. Sodium influx is balanced by a sodium: proton antiporter (NHD1), which was mimicked in recombinant Escherichia coli cells expressing both BASS2 and NHD1. Arabidopsis thaliana bass2 mutants lack pyruvate uptake into chloroplasts, which affects plastid-localized isopentenyl diphosphate synthesis, as evidenced by increased sensitivity of such mutants to mevastatin, an inhibitor of cytosolic isopentenyl diphosphate biosynthesis. We thus provide molecular evidence for a sodium-coupled metabolite transporter in plastid envelopes. Orthologues of BASS2 can be detected in all the genomes of land plants that have been characterized so far, thus indicating the widespread importance of sodium-coupled pyruvate import into plastids.
    NATURE PUBLISHING GROUP, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1038/nature10250
    DOI ID:10.1038/nature10250, ISSN:0028-0836, ORCID:36106196, Web of Science ID:WOS:000294209400041
  • Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array               
    Nakamura, Masayoshi; Ehrhardt, David W.; Hashimoto, Takashi
    Nature Cell Biology, 巻:12, 号:11, 開始ページ:1064, 終了ページ:U49, 2010年, [査読有り], [筆頭著者]
    Microtubule nucleation in interphase plant cells primarily occurs through branching from pre-existing microtubules at dispersed sites in the cell cortex(1,2,3). The minus ends of new microtubules are often released from the sites of nucleation, and the free microtubules are then transported to new locations by polymer treadmilling(1). These nucleation-and-release events are characteristic features of plant arrays in interphase cells, but little is known about the spatiotemporal control of these events by nucleating protein complexes. We visualized the dynamics of two fluorescently-tagged gamma-tubulin complex proteins, GCP2 and GCP3, in Arabidopsis thaliana. These probes labelled motile complexes in the cytosol that transiently stabilized at fixed locations in the cell cortex. Recruitment of labelled complexes occurred preferentially along existing cortical microtubules, from which new microtubule was synthesized in a branching manner, or in parallel to the existing microtubule. Complexes localized to microtubules were approximately 10-fold more likely to display nucleation than were complexes recruited to other locations. Nucleating complexes remained stable until daughter microtubules were either completely depolymerized from their plus ends or released by katanin-dependent severing activity. These observations suggest that the nucleation complexes are primarily activated on association with microtubule lattices, and that nucleation complex stability depends on association with daughter microtubules and is regulated in part by katanin activity.
    NATURE PUBLISHING GROUP, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1038/ncb2110
    DOI ID:10.1038/ncb2110, ISSN:1465-7392, CiNii Articles ID:80021400446, ORCID:36106197, Web of Science ID:WOS:000283711500009
  • A mutation in the Arabidopsis gamma-tubulin-containing complex causes helical growth and abnormal microtubule branching               
    Nakamura, Masayoshi; Hashimoto, Takashi
    Journal of Cell Science, 巻:122, 号:13, 開始ページ:2208, 終了ページ:2217, 2009年, [査読有り], [筆頭著者]
    Plant cortical microtubules are mainly nucleated on previously established microtubules, grow at a narrow range of angles to the wall of mother microtubules, and eventually are released from the nucleation sites. These nucleation events are thought to be regulated by gamma-tubulin-containing complexes. We here show that a null mutation of Arabidopsis GCP2, a core subunit of the gamma-tubulin-containing complex, severely impaired the development of male and female gametophytes. However, a missense mutation in the conserved grip1 motif, called spiral3, caused a left-handed helical organization of cortical microtubule arrays, and severe right-handed helical growth. The spiral3 mutation compromises interaction between GCP2 and GCP3, another subunit of the complex, in yeast. In the spiral3 mutant, microtubule dynamics and nucleation efficiency were not markedly affected, but nucleating angles were wider and more divergently distributed. A spiral3 katanin double mutant had swollen and twisted epidermal cells, and showed that the microtubule minus ends were not released from the nucleation sites, although the nucleating angles distributed in a similar manner to those in spiral3. These results show that Arabidopsis GCP2 has an important role in precisely positioning the gamma-tubulin-containing complex on pre-existing microtubules and in the proper organization of cortical arrays.
    COMPANY OF BIOLOGISTS LTD, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1242/jcs.044131
    DOI ID:10.1242/jcs.044131, ISSN:0021-9533, CiNii Articles ID:80020448010, ORCID:36106198, PubMed ID:19509058, Web of Science ID:WOS:000267105100007
  • Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells               
    Nakamura, M; Naoi, K; Shoji, T; Hashimoto, T
    Plant and Cell Physiology, 巻:45, 号:9, 開始ページ:1330, 終了ページ:1334, 2004年, [査読有り], [筆頭著者]
    Previous studies showed that sub-micromolar concentrations of the microtubule-targeting herbicide propyzamide cause a right-handed helical arrangement of cortical microtubule arrays and left-handed twisting in elongating Arabidopsis epidermal cells. When seedlings were grown in the presence of 1-2 muM propyzamide or 50-100 nM oryzalin, we show that microtubules spent more time in a paused state in which they exhibited little net change in length. The drug treatment also resulted in slower growth and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. A reduction in microtubule dynamic turnover may underlie the drug-induced rearrangement of cortical arrays.
    OXFORD UNIV PRESS, 英語, 研究論文(学術雑誌)
    DOI:https://doi.org/10.1093/pcp/pch300
    DOI ID:10.1093/pcp/pch300, ISSN:0032-0781, ORCID:36106199, Web of Science ID:WOS:000224706900026
■ MISC
  • 糖輸送体SWEETの活性制御機構の解明               
    田中遥那; 田中遥那; 磯田玲華; 三城恵美; FROMMER Wolf B.; 中村匡良
    日本植物生理学会年会(Web), 巻:65th, 2024年
    J-Global ID:202402212527745333
  • フィトクロム蛍光を利用した植物の核イメージング               
    YOSHINARI Akira; YOSHINARI Akira; ISODA Reika; YAGI Noriyoshi; FROMMER Wolf B.; FROMMER Wolf B.; FROMMER Wolf B.; NAKAMURA Masayoshi
    日本植物生理学会年会(Web), 巻:65th, 2024年
    J-Global ID:202402275450484131
  • ショ糖かジベレリンか?-二つの基質の輸送活性を切り分けたSWEET13の機能解明               
    礒田玲華; PALMAI Zoltan; 吉成晃; CHEN Li-Qing; TAMA Florence; TAMA Florence; TAMA Florence; FROMMER Wolf B.; FROMMER Wolf B.; 中村匡良
    日本植物生理学会年会(Web), 巻:64th, 2023年
    J-Global ID:202302218843055576
  • 糖輸送体SWEETの基質選択性を操作する               
    礒田玲華; PALMAI Zoltan; 吉成晃; CHEN Li-Qing; TAMA Florence; TAMA Florence; TAMA Florence; FROMMER Wolf B.; FROMMER Wolf B.; 中村匡良
    トランスポーター研究会年会抄録集, 巻:17th (Web), 2023年
    J-Global ID:202302267143652694
  • フィトクロム蛍光を利用した植物核のライブイメージング               
    吉成晃; 吉成晃; 礒田玲華; 八木慎宜; フロマー ウォルフ; フロマー ウォルフ; フロマー ウォルフ; 中村匡良
    日本植物学会大会研究発表記録(CD-ROM), 巻:87th, 2023年
    J-Global ID:202302267593300749
  • ホウ酸輸送体BOR1の分解を促進する新規化合物Polarin2の作用機序の解析               
    吉成晃; 吉成晃; 佐藤綾人; フロマー ウォルフ; フロマー ウォルフ; フロマー ウォルフ; 中村匡良
    日本土壌肥料学会講演要旨集(Web), 巻:69, 2023年
    ISSN:2424-0575, J-Global ID:202402249046159634
  • 受容体様キナーゼDPK1の極性局在機構における酸性ループ領域の機能解析               
    吉成晃; 吉成晃; 三城恵美; 加納圭子; 桑田啓子; FROMMER Wolf B.; FROMMER Wolf B.; FROMMER Wolf B.; 中村匡良
    日本植物生理学会年会(Web), 巻:64th, 2023年
    J-Global ID:202302272313489999
  • 受容体様キナーゼの極性スイッチ機構               
    吉成晃; 礒田玲華; 桑田啓子; FROMMER Wolf; FROMMER Wolf; FROMMER Wolf; 中村匡良
    日本植物生理学会年会(Web), 巻:63rd, 2022年
    J-Global ID:202202262304835205
  • ホウ酸輸送体BOR1の偏在と分解を変調するPolarin化合物群の探索と作用機序の解析               
    吉成晃; 佐藤綾人; ウォルフ フロマー; ウォルフ フロマー; 中村匡良
    日本土壌肥料学会講演要旨集(Web), 巻:68, 2022年
    ISSN:2424-0575, J-Global ID:202302257178514350
  • 植物間期細胞における微小管形成機構               
    八木慎宜; 加藤壮英; 松永幸大; EHRHARDT David; 橋本隆; 中村匡良
    日本植物生理学会年会(Web), 巻:63rd, 2022年
    J-Global ID:202202217754238942
  • 化学遺伝学による栄養素輸送体の極性局在機構の解明               
    吉成晃; 佐藤綾人; FROMMER Wolf; FROMMER Wolf; FROMMER Wolf; 中村匡良
    日本土壌肥料学会講演要旨集(Web), 巻:67, 2021年
    ISSN:2424-0575, J-Global ID:202202234846392494
  • イオン化支援基板DIUTHAMEを用いたイネ胚珠中の単糖および二糖の質量分析イメージング               
    川村友理子; 吉成晃; 中村匡良; FROMMER Wolf B.; 大村孝幸; 小谷政弘; 内藤康秀; 桑田啓子
    質量分析総合討論会講演要旨集, 巻:68th, 2020年
    J-Global ID:202002243557847963
  • イオン化支援基盤DIUTHAMEを用いたイメージング質量分析による,イネ胚珠における糖の分布の解析               
    川村友理子; 吉成晃; 中村匡良; FROMMER Wolf B.; 大村孝幸; 小谷政弘; 内藤康秀; 桑田啓子
    日本生化学会大会(Web), 巻:92nd, 2019年
    J-Global ID:202002291833565862
  • シロイヌナズナのMsd1とWDR8における核形成部位からの新規微小管切り離しの必要性               
    八木慎宜; 濱田隆宏; 中村匡良; 川口麻由美; 加藤壮英; 松永幸大; 橋本隆
    Plant Morphology, 巻:28, 号:1, 2016年
    ISSN:0918-9726, J-Global ID:201902254954655614
  • 微小管形成開始部位に局在するシロイヌナズナ新規MAPsの機能解析               
    加藤壮英; 濱田隆宏; 中村匡良; 八木慎宜; 川口摩悠美; 橋本隆
    日本植物生理学会年会要旨集, 巻:54th, 2013年
    J-Global ID:201302217717400422
  • A plastidial sodium-dependent pyruvate transporter (vol 476, pg 472, 2011)               
    Tsuyoshi Furumoto; Teppei Yamaguchi; Yumiko Ohshima-Ichie; Masayoshi Nakamura; Yoshiko Tsuchida-Iwata; Masaki Shimamura; Junichi Ohnishi; Shingo Hata; Udo Gowik; Peter Westhoff; Andrea Braeutigam; Andreas P. M. Weber; Katsura Izui
    巻:478, 号:7368, 開始ページ:274, 終了ページ:274, 2011年10月
    英語, その他
    DOI:https://doi.org/10.1038/nature10518
    DOI ID:10.1038/nature10518, ISSN:0028-0836, Web of Science ID:WOS:000295782800057
  • NIMA関連キナーゼは相互作用し,微小管機能を介して細胞成長方向を制御する。               
    本瀬宏康; 濱田隆宏; 中村匡良; 加藤壮英; 村田隆; 渡辺雄一郎; 橋本隆; 酒井達也; 高橋卓
    日本植物生理学会年会要旨集, 巻:51st, 2010年
    J-Global ID:201002219502794277
  • シロイヌナズナNIMAカイネースの機能               
    本瀬宏康; 濱田隆宏; 中村匡良; 加藤壮英; 橋本隆; 酒井達也; 渡辺雄一郎
    日本植物生理学会年会要旨集, 巻:50th, 2009年
    J-Global ID:200902202954017137
■ 講演・口頭発表等
  • Live-cell imaging of plant nucleus using phytochrome-derived autofluorescence               
    Akira Yoshinari; Reika Isoda; Noriyoshi Yagi; Wolf B. Frommer; Masayoshi Nakamura
    American Society of Plant Biology 2025, 2025年06月
  • Investigating microtubule nucleation apparatus in plant cells               
    Masayoshi Nakamura
    EMBL Symposium, Microtubules: from atoms to complex systems
    2024年06月 - 2024年06月, 口頭発表(一般)
  • 糖輸送体SWEET:機能解析と農業利用               
    中村 匡良
    第18回トランスポーター研究会年会, [招待有り]
    2024年06月 - 2024年06月, 口頭発表(招待・特別)
  • Elucidating molecular mechanism of microtubule nucleation, severing, and regulation of microtubule dynamics during the organization of cortical microtubule arrays in plants               
    Masayoshi Nakamura
    The 49th NAITO Conference on Frontiers of Microtubule and Its-related Motors: Atomic Structures, Cellular Functions, Development and Diseases, [招待有り]
    2023年07月 - 2023年07月, 口頭発表(招待・特別)
  • Mechanical insights into plant chiral growth through twisted mutant analysis               
    Masayoshi Nakamura
    Yamada Conference LXXV Origin of left-right asymmetry in animals, [招待有り]
    2023年01月 - 2023年01月, 口頭発表(招待・特別)
  • SWEET transporter: physiological functions and its agricultural use               
    Masayoshi Nakamura
    第45回日本分子生物学会年会, [招待有り]
    2022年11月 - 2022年12月, 口頭発表(招待・特別)
  • ねじれ変異株解析からみる植物の左右性               
    中村匡良
    第44回日本分子生物学会年会, 2021年12月, [招待有り]
  • Movement in plants               
    Masayoshi Nakamura
    Science Japan Meeting 2021, 2021年04月, [招待有り]
  • 植物の左右性               
    中村匡良; 橋本隆
    第43回日本分子生物学会年会, 2020年12月, [招待有り]
  • Mechanisms for Reorientation of Cortical Microtubule Arrays in Response to Blue Light               
    Masayoshi Nakamura
    1st PSC Advanced Microscopic Imaging Symposium, 2018年08月, [招待有り]
    英語
  • 青色光に応答した微小管ダイナミクス               
    中村 匡良
    日本植物学会第81回大会, 2017年09月, [招待有り]
    日本語
■ 所属学協会
  • 日本植物生理学会
  • 日本分子生物学会
■ 共同研究・競争的資金等の研究課題
  • 植物の形態を支える微小管形成機構の分子基盤               
    日本学術振興会, 科学研究費助成事業, 基盤研究(B), 2023年04月01日 - 2026年03月31日
    中村 匡良, 名古屋大学
    配分額(総額):18720000, 配分額(直接経費):14400000, 配分額(間接経費):4320000
    課題番号:23K27166
  • 植物細胞分裂における微小管形成と切断の協力関係を理解する               
    日本学術振興会, 科学研究費助成事業, 挑戦的研究(萌芽), 2020年07月30日 - 2023年03月31日
    中村 匡良, 名古屋大学
    配分額(総額):6500000, 配分額(直接経費):5000000, 配分額(間接経費):1500000
    植物細胞の増殖と組織における形づくりは正確な細胞分裂の制御に委ねられている。真核生物の細胞分裂は微小管によって実行され、植物細胞では微小管は細胞周期に応じて、表層微小管・分裂準備帯・紡錘体・隔膜形成体といった特徴的な構造を再構築し機能している。中心体のような決まった微小管形成中心に依存せずに組み立てられる植物細胞の微小管構造構築機構は謎が多い。微小管形成装置や微小管切断装置が再配置に重要と考えられるが、例えば、どのように微小管はその構造体を紡錘体から隔膜形成体に変化させるか?など重要であるにもかかわらず理解されていない。本研究では、γチューブリン複合体とカタニンの時間的空間的な機能を理解することを目的とし、ライブイメージング中のタンパク質機能阻害技術の確立に挑戦する。これまで、低い温度でタンパク質分解が誘導できるlt-degronをカタニンp60サブユニットとNEDD1に付加したプラスミドを作成し、植物体に導入したが、lt-degronを付加した機能的なカタニンp60やNEDD1を持つ植物体を作出することができなかった。本年度は、他のカタニン複合体因子であるp80サブユニットや重合核因子であるGIP1を標的とした植物を作成した。導入タンパク質の機能を確認するため、機能欠損株や微小管マーカーラインとの掛け合わせを行っている。
    課題番号:20K21424
  • 微小管の力学的特性計測と再構成系による微小管切断装置の階層的理解               
    日本学術振興会, 科学研究費助成事業, 国際共同研究加速基金(国際共同研究強化(B)), 2018年10月09日 - 2023年03月31日
    中村 匡良; 吉成 晃; 橋本 隆, 名古屋大学
    配分額(総額):17940000, 配分額(直接経費):13800000, 配分額(間接経費):4140000
    微小管の配向パターン形成の制御は、染色体分離や細胞極性、形態形成など生物に必須な活動に寄与している。発生や環境シグナルに応答し植物が表層微小管の変化させるためには、カタニンによる微小管切断が重要である。微小管動態解析により植物体表面の間期表皮細胞における微小管切断部位や切断に要する時間は確認できるが、カタニンの局在性や切断活性制御の分子基盤は明らかとなっていない。そこで、本研究では、従来の遺伝学や生化学的解析に加え、ライブセルイメージング法やin vitro再構築系の確立を行うことで微小管切断装置を分子レベル・細胞レベルで理解することを目的とする。微小管切断因子であるカタニンは切断活性を持つp60サブユニット、及び切断部位や活性を制御するp80サブユニットで構成される。表層微小管の時間的空間的な制御機構を明らかにするため、p80および関連タンパク質のカタニン局在への機能を調べる。計画4年目も海外での研究が不可能であったため、国内研究機関での研究が中心となった。ライブイメージング解析と遺伝学的解析から、WDR8-Msd1複合体が切断部位にカタニンをリクルートする機能が、微小管形成部位での微小管切断制御に重要であることを明らかにした。さらに、細胞層特異的な微小管マーカーラインを開発し、光に応答した内側細胞層での微小管動態解析を行った。また、質量分析により植物チューブリンの翻訳後修飾解析とカタニン相互作用因子の同定を行い、同定されたアセチル化やリン酸化・相互作用因子が微小管配向制御に関わるかの解析を行っている。
    課題番号:18KK0195
TOP