SEARCH
Search Details
SUGIURA Yousuke
Mathematics, Electronics and Informatics Division | Assistant Professor |
Department of Information and Computer Sciences |
Researcher information
■ Research Keyword■ Field Of Study
■ Career
- Apr. 2015 - Present, Saitama University, Graduate School of Science and Engineering, Assistant Professor
- Apr. 2013 - Mar. 2015, Tokyo University of Science, Faculty of Industrial Science and Technology, Assistant Professor
Performance information
■ Paper- Frequency-Domain Weighted FxLMS Algorithm for Feedback Active Noise Control
Yosuke SUGIURA; Ryota NOGUCHI; Tetsuya SHIMAMURA
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Volume:E108.A, Number:3, First page:323, Last page:331, Mar. 2025, [Reviewed], [Lead]
Institute of Electronics, Information and Communications Engineers (IEICE), English, Scientific journal
DOI:https://doi.org/10.1587/transfun.2024smp0008
DOI ID:10.1587/transfun.2024smp0008, ISSN:0916-8508, eISSN:1745-1337 - Acoustic Feature Extraction Method for Piglet Call Detection
Tenma Nakano; Yosuke Sugiura; Tetsuya Shimamura; Yoshiyuki Nakamura; Ayaka Miyazaki
Lecture Notes in Electrical Engineering, First page:332, Last page:341, Feb. 2025, [Reviewed]
Springer Nature Singapore, In book
DOI:https://doi.org/10.1007/978-981-96-1535-3_33
DOI ID:10.1007/978-981-96-1535-3_33, ISSN:1876-1100, eISSN:1876-1119 - FxlogLMS+: Modified FxlogLMS Algorithm for Active Impulsive Noise Control
Aoi Haneda; Yosuke Sugiura; Tetsuya Shimamura
Lecture Notes in Electrical Engineering, First page:342, Last page:351, Feb. 2025, [Reviewed]
Springer Nature Singapore, In book
DOI:https://doi.org/10.1007/978-981-96-1535-3_34
DOI ID:10.1007/978-981-96-1535-3_34, ISSN:1876-1100, eISSN:1876-1119 - Real-Time Video Denoising Acceleration Using Pixel Shuffle and FP16
Riku Masuko; Yosuke Sugiura; Tetsuya Shimamura
Lecture Notes in Electrical Engineering, First page:322, Last page:331, Feb. 2025, [Reviewed]
Springer Nature Singapore, In book
DOI:https://doi.org/10.1007/978-981-96-1535-3_32
DOI ID:10.1007/978-981-96-1535-3_32, ISSN:1876-1100, eISSN:1876-1119 - Arrival Time Difference Estimation Based on GCC-PHAT for Multiple Loudspeakers
Riku Kasakura; Yosuke Sugiura; Tetsuya Shimamura
Lecture Notes in Electrical Engineering, First page:312, Last page:321, Feb. 2025, [Reviewed]
Springer Nature Singapore, In book
DOI:https://doi.org/10.1007/978-981-96-1535-3_31
DOI ID:10.1007/978-981-96-1535-3_31, ISSN:1876-1100, eISSN:1876-1119 - StereoLCM: Accelerating Stereo Image Generation Using Latent Consistency Model
Yukito Onuma; Yosuke Sugiura; Tetsuya Shimamura
Proceedings of 2025 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing, First page:1, Last page:4, Feb. 2025, [Reviewed]
International conference proceedings - A Variable Step-size for Weighted Frequency-domain Feedback Active Noise Control
Ryota Noguchi; Yosuke Sugiura; Tetsuya Shimamura
Proceedings of 2025 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing, First page:1, Last page:4, Feb. 2025, [Reviewed]
International conference proceedings - Investigation of Lightweight Techniques for Multi-task Automatic Modulation Classification
Naoyuki Funabashi; Yosuke Sugiura; Tetsuya Shimamura
Proceedings of 2025 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing, First page:1, Last page:4, Feb. 2025, [Reviewed]
International conference proceedings - Exploring the EmoBone Dataset with Bi-Directional LSTM for Emotion Recognition via Bone Conducted Speech
Md. Sarwar Hosain; Md. Rifat Hossen; Md. Uzzal Mia; Yosuke Sugiura; Tetsuya Shimamura
Proceedings of 2025 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing, Feb. 2025, [Reviewed]
International conference proceedings - Machine Learning Approach to Energy Detection Based Spectrum Sensing for Cognitive Radio Networks
Md. Tofail Ahmed; Mousumi Haque; Yosuke Sugiura; Tetsuya Shimamura
IEEJ Transactions on Electrical and Electronic Engineering, Jan. 2025, [Reviewed]
Abstract
Cognitive radio is an intelligent technology for wireless communication that optimizes the use of available frequency bands. Machine learning techniques can play an important role in spectrum sensing for cognitive radio networks to meet the rising traffic demand of wireless communication systems. The reliability of spectrum sensing methods depends on the prior knowledge of the noise to set a threshold. On the other hand, the success of a machine learning model relies on both the datasets and the accuracy of its learning algorithms. In this paper, we propose a spectrum sensing method for cognitive radio based on a machine learning algorithm in the conventional energy detection technique that removes the requirement to calculate the threshold. Initially, we introduce a method to build the dataset using the general concept of spectrum sensing based on the energy detection technique. The Naive Bayes supervised machine learning classification algorithm is implemented on the generated dataset for training, validation, and testing to sense the available spectrum. The proposed method is evaluated and tested using performance metrics such as confusion matrix, accuracy, precision, recall, F1 score, probability of detection, and probability of false alarm. In the simulation, the quadrature phase‐shift keying (QPSK) modulation scheme over the additive white Gaussian noise (AWGN) channel is considered. The experimental outcomes of the proposed method provide satisfactory and acceptable performance for spectrum sensing in cognitive radio networks. © 2025 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.
Wiley, Scientific journal
DOI:https://doi.org/10.1002/tee.24261
DOI ID:10.1002/tee.24261, ISSN:1931-4973, eISSN:1931-4981 - A Subjective Evaluation Dataset for GuitarSet
Takumi Hojo; Yosuke Sugiura; Nozomiko Yasui; Tetsuya Shimamura
2024 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), First page:1, Last page:5, Dec. 2024, [Reviewed]
IEEE, International conference proceedings
DOI:https://doi.org/10.1109/ispacs62486.2024.10868890
DOI ID:10.1109/ispacs62486.2024.10868890 - Lightweight Frequency Domain Hybrid Active Noise Control System for Uncorrelated Disturbance
Shosuke Namekawa; Yosuke Sugiura; Tetsuya Shimamura
2024 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), First page:1, Last page:5, Dec. 2024, [Reviewed]
IEEE, International conference proceedings
DOI:https://doi.org/10.1109/ispacs62486.2024.10868228
DOI ID:10.1109/ispacs62486.2024.10868228 - Detection of Practical Primary Users in Severe Noise Environments for Cognitive Radio
Mousumi Haque; Yosuke Sugiura; Tetsuya Shimamura
American Journal of Networks and Communications, Volume:13, Number:2, First page:97, Last page:107, Oct. 2024Cognitive radio (CR) is one of the compelling ideas to solve the spectrum scarcity problem for rapid developments in wireless communication systems. In CR systems, signal detection for orthogonal frequency division multiplexing (OFDM) systems in severe noise environments is a key challenge. The area of practical primary user detection has not been explored in depth. The proposed method is an effective method for sensing OFDM applications, which are the practical primary users, for low signal-to-noise (SNR) cases. In the proposed method, the parallel combination of the comb filter and the time-domain autocorrelation function is exploited. The detection performance is measured for various OFDM system applications, including the IEEE 802.11a wireless LAN (WLAN) radio interface, long-term evaluation (LTE), and digital audio broadcasting (DAB) for various CP ratios under 16-quadrature amplitude modulation (16-QAM) and 64-quadrature amplitude modulation (64-QAM) over multipath Rayleigh fading channels with additive white Gaussian noise (AWGN). Furthermore, the OFDM sensing is possible in the presence of noise uncertainty and the sensing performance is compared under consideration with and without noise uncertainty cases. The simulation results demonstrated that our proposed method undoubtedly improves the sensing performances (up to 11 dB SNR gain) of practical primary users more than the conventional spectrum detection methods for low SNR cases.
Science Publishing Group, Scientific journal
DOI:https://doi.org/10.11648/j.ajnc.20241302.12
DOI ID:10.11648/j.ajnc.20241302.12, ISSN:2326-893X, eISSN:2326-8964 - Lightweight Underwater Image Enhancement via Impulse Response of Low-Pass Filter Based Attention Network
May Thet Tun; Yosuke Sugiura; Tetsuya Shimamura
2024 IEEE International Conference on Image Processing (ICIP), First page:1697, Last page:1703, Oct. 2024, [Reviewed]
IEEE, International conference proceedings
DOI:https://doi.org/10.1109/icip51287.2024.10647440
DOI ID:10.1109/icip51287.2024.10647440 - Frequency-domain Feedback Active Noise Control using Weighted LMS Algorithm
Ryota Noguchi; Yosuke Sugiura; Tetsuya Shimamura
2024 32nd European Signal Processing Conference (EUSIPCO), First page:211, Last page:215, Aug. 2024, [Reviewed]
IEEE, International conference proceedings
DOI:https://doi.org/10.23919/eusipco63174.2024.10715075
DOI ID:10.23919/eusipco63174.2024.10715075 - A Novel Tight Closed-Form Capacity Analysis for Rician Fading Wireless Channel Using Small Limit Argument Approximation
Md. Sohidul Islam; Yosuke Sugiura; Tetsuya Shimamura
Journal of Signal Processing, Volume:28, Number:4, First page:119, Last page:122, Jul. 2024, [Reviewed]
Research Institute of Signal Processing, Japan, Scientific journal
DOI:https://doi.org/10.2299/jsp.28.119
DOI ID:10.2299/jsp.28.119, ISSN:1342-6230, eISSN:1880-1013 - EmoBone: A Multinational Audio Dataset of Emotional Bone Conducted Speech
Md. Sarwar Hosain; Yosuke Sugiura; M. Shahidur Rahman; Tetsuya Shimamura
IEEJ Transactions on Electrical and Electronic Engineering, Volume:19, Number:9, First page:1492, Last page:1506, May 2024, [Reviewed]
Abstract
This paper introduces EmoBone, a comprehensive audio‐only emotional bone‐conducted speech dataset featuring speakers from various countries. The dataset comprises speeches from 28 individuals representing 10 different nations, with each participant delivering 10 sentences designed to evoke distinct emotions. In addition to an air‐conducted microphone, the recordings utilized bone conduction technology, transmitting sound directly to the speakers' inner ears, ensuring high‐quality emotional speech recordings. To assess the validity of the dataset, 80 university students from Bangladesh listened to the recordings and successfully identified the expressed emotions with an accuracy exceeding 76%. Statistical methods were also employed to evaluate the reliability of the dataset, revealing a high level of agreement among raters. EmoBone, with a cumulative duration surpassing 19 h and 15 680 unique utterances, stands as the most extensive emotional speech dataset available. This makes it a valuable tool for studying how emotional speech varies across cultures. Furthermore, due to its utilization of bone conduction technology, EmoBone facilitates the study of acoustic features in emotional speech from diverse dimensions. The data that supports the findings of this study is available upon reasonable request. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.
Wiley, Scientific journal
DOI:https://doi.org/10.1002/tee.24110
DOI ID:10.1002/tee.24110, ISSN:1931-4973, eISSN:1931-4981 - Regularized Modified Covariance Method for Spectral Analysis of Bone-Conducted Speech
Ohidujjaman; Yosuke Sugiura; Nozomiko Yasui; Tetsuya Shimamura; Hisanori Makinae
Journal of Signal Processing, Volume:28, Number:3, First page:77, Last page:87, May 2024, [Reviewed]
Research Institute of Signal Processing, Japan, Scientific journal
DOI:https://doi.org/10.2299/jsp.28.77
DOI ID:10.2299/jsp.28.77, ISSN:1342-6230, eISSN:1880-1013 - Packet Loss Concealment Estimating Residual Errors of Forward-Backward Linear Prediction for Bone-Conducted Speech
Ohidujjaman; Nozomiko Yasui; Yosuke Sugiura; Tetsuya Shimamura; Hisanori Makinae
International Journal of Advanced Computer Science and Applications, Volume:15, Number:4, First page:1263, Last page:1268, Apr. 2024, [Reviewed]
The Science and Information Organization, Scientific journal
DOI:https://doi.org/10.14569/ijacsa.2024.01504126
DOI ID:10.14569/ijacsa.2024.01504126, ISSN:2158-107X, eISSN:2156-5570 - Distributed Blind Equalization with Block-Adaptive Approach on Wireless Sensor Network.
Sulin Chi; Yosuke Sugiura; Tetsuya Shimamura
2023 IEEE SENSORS(SENSORS), First page:1, Last page:4, 2023, [Reviewed]
IEEE, International conference proceedings
DOI:https://doi.org/10.1109/SENSORS56945.2023.10325095
DOI ID:10.1109/SENSORS56945.2023.10325095, DBLP ID:conf/ieeesensors/ChiSS23 - Quantifying Noise Robustness of Bone-Conducted Speech.
Shiming Zhang; Yosuke Sugiura; Nozomiko Yasui; Tetsuya Shimamura
63rd IEEE International Midwest Symposium on Circuits and Systems(MWSCAS), First page:582, Last page:585, 2020, [Reviewed]
IEEE, International conference proceedings
DOI:https://doi.org/10.1109/MWSCAS48704.2020.9184700
DOI ID:10.1109/MWSCAS48704.2020.9184700, DBLP ID:conf/mwscas/ZhangSYS20 - Angle Analysis and Blind Equalization in Wireless Sensor Networks
SuLin Chi; Nargis Parvin; Yosuke Sugiura; Nozomiko Yasui; Tetsuya Shimamura
2019 2ND IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SIGNAL PROCESSING (ICICSP), First page:102, Last page:106, 2019
In this paper, a signal transmission model through wireless sensor network (WSN) is presented. Further transmission from the WSN is considered, and an efficient and effective blind equalization scheme from the receiver site is discussed. Utilizing angle computation of the incident signal at the receiver, a new measurement, angle and normalized error, is derived, which is implemented adaptively to find the best channel path for the blind equalizer to be followed. Computer simulations show as example of estimation of the transmitted signal where the proposed equalizer provides a significant improvement relative to the conventional blind equalizers.
IEEE, English, International conference proceedings
Web of Science ID:WOS:000516605600022 - Cross Conditional Network for Speech Enhancement.
Haruki Tanaka; Yosuke Sugiura; Nozomiko Yasui; Tetsuya Shimamura; Ryoichi Miyazaki
2019 International Symposium on Intelligent Signal Processing and Communication Systems(ISPACS), First page:1, Last page:2, 2019
IEEE, International conference proceedings
DOI:https://doi.org/10.1109/ISPACS48206.2019.8986375
DOI ID:10.1109/ISPACS48206.2019.8986375, DBLP ID:conf/ispacs/TanakaSYSM19
- ChatGPTを用いた対話型編曲システムに関する検討—A Study on an Interactive Arrangement System Using ChatGPT
原田 隼太朗; 杉浦 陽介; 安井 希子; 島村 徹也
Volume:43, Number:5, First page:7, Last page:9, Oct. 2024
Japanese
ISSN:0912-7283, CiNii Books ID:AN10170875 - グラフ信号処理を用いたエッジ抽出とその応用—Edge Extraction Using Graph Signal Processing and Its Applications—知覚情報/次世代産業システム合同研究会・センシング・画像・AI活用および処理一般
落合 亮; 杉浦 陽介; 島村 徹也
Volume:2024, Number:1-15, First page:23, Last page:28, 26 Mar. 2024
Japanese - 行動・姿勢指標を用いた豚の分娩検知精度の検討
石井彩夏; 江川紗智子; 徳永忠昭; 坂本信介; 右京里那; 橋本果林; 宮野大輝; 杉浦陽介; 平山祐理
Volume:121st, 2024
J-Global ID:202502224845926227 - 非線形回帰分析を用いた歌唱のうまさに対する印象評価構造—Impression Evaluation Model using Nonlinear Regression Analysis for Goodness of Singing
新明 直斗; 安井 希子; 杉浦 陽介; 島村 徹也
Volume:41, Number:9, First page:47, Last page:50, 19 Feb. 2023
Japanese
ISSN:0912-7283, CiNii Books ID:AN10170875 - 印刷品質評価のための主観評価データセットの作成—Creation of subjective evaluation datasets for Print Quality Assessment—システム実現技術,近距離通信応用システム,知的マルチメディア処理システム,放送技術および一般
利根川 涼介; 杉浦 陽介; 安井 希子; 島村 徹也
Volume:46, Number:30, First page:37, Last page:42, Oct. 2022
Japanese
ISSN:1342-6893, CiNii Books ID:AN1059086X - スパース通信路に対するブラインド推定手法の検討—A Study of Blind Estimation for Sparse Channel for the Technical Report of the Institute of Electronics, Information and Communication Engineers Guide to the Technical Report and Template—システム実現技術,近距離通信応用システム,知的マルチメディア処理システム,放送技術および一般
杉浦 陽介; 篠田 開斗; 安井 希子; 島村 徹也
Volume:46, Number:30, First page:61, Last page:65, Oct. 2022
Japanese
ISSN:1342-6893, CiNii Books ID:AN1059086X - 音声自然性改善に向けた音声強調ネットワークに対するカプセル構造の導入—Toward Improving Speech Naturalness Introducing a Capsule Structure for Speech Enhancement Networks—システム実現技術,近距離通信応用システム,知的マルチメディア処理システム,放送技術および一般
春日 玲人; 島村 徹也; 杉浦 陽介; 安井 希子
Volume:46, Number:30, First page:15, Last page:20, Oct. 2022
Japanese
ISSN:1342-6893, CiNii Books ID:AN1059086X - 降水量に応じたACMによる高効率衛星通信—High efficient satellite communication with ACM complying with precipitation amount—システム実現技術,近距離通信応用システム,知的マルチメディア処理システム,放送技術および一般
宮本 周; 杉浦 陽介; 安井 希子; 島村 徹也
Volume:46, Number:30, First page:55, Last page:59, Oct. 2022
Japanese
ISSN:1342-6893, CiNii Books ID:AN1059086X - アテンション機構による音声強調ネットワークの性能改善—Performance improvement of speech enhancement network using attention-mechanism—システム研究会 ディジタル信号処理システム一般
杉浦 陽介
Volume:2021, Number:1-6, First page:1, Last page:4, 23 Apr. 2021
Japanese
CiNii Articles ID:40022555679 - Optimization of source-filter based speech waveform generation using adversarial training
光井勇人; 杉浦陽介; 安井希子; 島村徹也
電子情報通信学会技術研究報告(Web), Volume:120, Number:415(SIS2020 35-59), 2021
ISSN:2432-6380, J-Global ID:202102234330010696 - Adversarial Training using Self-Attention Architecture for Speech Enhancement Network
杉浦陽介; 島村徹也
電子情報通信学会技術研究報告, Volume:119, Number:458(SIS2019 37-60), First page:125, Last page:129, 2020
Japanese
ISSN:0913-5685, J-Global ID:202002277013145259, CiNii Articles ID:40022208412, CiNii Books ID:AA1123312X - Adversarial Learning Architecture Based on Edge Information for Image Completion Network
森康一; 杉浦陽介; 安井希子; 島村徹也
電子情報通信学会技術研究報告, Volume:119, Number:458(SIS2019 37-60), First page:131, Last page:135, 2020
Japanese
ISSN:0913-5685, J-Global ID:202002213824888445, CiNii Articles ID:40022208416, CiNii Books ID:AA1123312X - Performance improvement of speech enhancement network by multitask learning including noise information
田中 晴樹; 杉浦 陽介; 安井 希子; 島村 徹也; 宮崎 亮一
Volume:119, Number:334, First page:31, Last page:36, 12 Dec. 2019
Japanese
ISSN:0913-5685, CiNii Articles ID:40022117915, CiNii Books ID:AN10164817 - サブバンド分解を用いたk-SVDに基づく画像雑音除去—Image Denoising based on k-SVD using Sub-band decomposition—システム研究会 ディジタル信号処理システム最適化一般
杉浦 陽介; 池上 征人; 島村 徹也
Volume:2019, Number:12-18, First page:33, Last page:38, 14 Jun. 2019
Japanese
CiNii Articles ID:40022004967, CiNii Books ID:AA12505509 - MIMOにおける雑音分散を考慮したQRM-MLD法の性能改善—Improvement of QRM-MLD Method for MIMO Utilizing Noise Variance
今野 遼太郎; 杉浦 陽介; 島村 徹也
Volume:117, Number:482, First page:51, Last page:56, Mar. 2018
Japanese
ISSN:0913-5685, CiNii Articles ID:40021522621, CiNii Books ID:AA1123312X - 窓なし重み付き自己相関関数を用いた基本周波数推定—Pitch Estimation Using Windowless Weighted Auto-Correlation Function
三谷 恭平; 杉浦 陽介; 島村 徹也
Volume:117, Number:482, First page:7, Last page:12, Mar. 2018
Japanese
ISSN:0913-5685, CiNii Articles ID:40021522425, CiNii Books ID:AA1123312X - Non-Local Meansを用いた音声強調—Speech Enhancement Using Non-Local Means
三谷 恭平; 杉浦 陽介; 島村 徹也
Volume:117, Number:517, First page:227, Last page:230, Mar. 2018
Japanese
ISSN:0913-5685, CiNii Articles ID:40021521738, CiNii Books ID:AA1123312X - A Study on Structure of Deep Neural Network for Speech Enhancement
杉浦陽介; 島村徹也
電子情報通信学会技術研究報告, Volume:117, Number:516(SIP2017 111-184), First page:379, Last page:384, 2018
Japanese
ISSN:0913-5685, J-Global ID:201802227684981000, CiNii Articles ID:40021523662, CiNii Books ID:AA1123312X - Voiceless Consonant Detection and Artificial Bandwidth Extension of Narrow Band Speech
浅和駿; 杉浦陽介; 島村徹也
電子情報通信学会技術研究報告, Volume:117, Number:516(SIP2017 111-184), First page:231, Last page:234, 2018
Japanese
ISSN:0913-5685, J-Global ID:201802254828644723, CiNii Articles ID:40021521744, CiNii Books ID:AA1123312X - 音声強調入門—Introduction to Speech Enhancement—システム研究会 ディジタル信号処理システム最適化一般
杉浦 陽介
Volume:2017, Number:21-37, First page:5, Last page:9, 16 Sep. 2017
Japanese
CiNii Articles ID:40021339455, CiNii Books ID:AA12505509 - ポスター講演 雑音に頑強な話者認識のための基本周波数を用いた深層ニューラルネットワーク—Poster Presentation : Deep Neural Network Using Fundamental Frequency For Noise Robust Speaker Recognition—音声 ; 第18回音声言語シンポジウム
鈴木 良啓; 杉浦 陽介; 島村 徹也
Volume:116, Number:378, First page:53, Last page:56, Dec. 2016
Japanese
ISSN:0913-5685, CiNii Articles ID:40021060166, CiNii Books ID:AA1123312X - スペクトル包絡と無声子音情報を利用する狭帯域音声の帯域拡張—Artificial Bandwidth Extension of Narrow Band Speech Using Spectral Envelope and Voiceless Consonant Information—応用音響
浅和 駿; 杉浦 陽介; 島村 徹也
Volume:116, Number:122, First page:57, Last page:62, Jul. 2016
Japanese
ISSN:0913-5685, CiNii Articles ID:40020906811, CiNii Books ID:AA1123312X - シンボルインタリーブによるUWB通信における狭帯域干渉軽減—Narrowband Interference Mitigation via Symbol Interleaving for UWB Communication Systems
小川 永策; 杉浦 陽介; 島村 徹也
Volume:115, Number:505, First page:129, Last page:134, Mar. 2016
Japanese
ISSN:0913-5685, CiNii Articles ID:40020801903, CiNii Books ID:AA1123312X - Adding Phase Information to Cross-Correlation Functions with Binary Signal for Speech Enhancement
三谷恭平; 杉浦陽介; 島村徹也
電子情報通信学会技術研究報告, Volume:116, Number:122(EA2016 7-19), First page:63, Last page:68, 2016
Japanese
ISSN:0913-5685, J-Global ID:201602254273875216, CiNii Articles ID:40020906823, CiNii Books ID:AA1123312X - D-14-2 Howling Canceler Using an Adaptive Notch Filter with Flexible Gain
MASHITA Kanji; UEHARA Yuki; SUGIURA Yosuke; AIKAWA Naoyuki
Proceedings of the IEICE General Conference, Volume:2015, Number:1, First page:164, 24 Feb. 2015
The Institute of Electronics, Information and Communication Engineers, Japanese
CiNii Articles ID:110009944949, CiNii Books ID:AN10471452 - 逆ノッチフィルタを用いた倍音構造に基づく音高推定システムの開発—A Pitch Detection System Based On Harmonic Structure Using The Inverse Notch Filter—制御研究会 制御工学分野における信号処理技術,および制御・信号処理一般
難波 慎太郎; 杉浦 陽介; 相川 直幸
Volume:2015, Number:4-19, First page:11, Last page:16, 28 Jan. 2015
Japanese
CiNii Articles ID:40020341263, CiNii Books ID:AA1250551X - ガボールフィルタを用いた特徴量空間による血液細胞分類システムの開発—Development of Hemocyte classification System Using Features Space Extracted by Gabor Filter—制御研究会 制御工学分野における信号処理技術,および制御・信号処理一般
友田 哲平; 杉浦 陽介; 相川 直幸
Volume:2015, Number:4-19, First page:51, Last page:54, 28 Jan. 2015
Japanese
CiNii Articles ID:40020341492, CiNii Books ID:AA1250551X - フィードバックANCシステムの適応ノッチフィルタによる高速低演算量化—Feedback ANC System with Low Complexity Using Adaptive Notch Filters—制御研究会 制御工学分野における信号処理技術,および制御・信号処理一般
高橋 三記; 杉浦 陽介; 相川 直幸
Volume:2015, Number:4-19, First page:83, Last page:88, 28 Jan. 2015
Japanese
CiNii Articles ID:40020341720, CiNii Books ID:AA1250551X - Howling Canceler Using an Adaptive Notch Filter with Flexible Gain Which Has High Estimation Accuracy and Speech Quality
間下 寛二; 上原 裕貴; 杉浦 陽介
Volume:2015, Number:4, First page:29, Last page:34, 28 Jan. 2015
Japanese
CiNii Articles ID:40020341356, CiNii Books ID:AA1250551X - FPGAを用いたおしぼり表面に付着した髪の毛の自動判別システムの開発—A Development of Automatic Discrimination System of Hair on the Wet Towel Using FPGA—信号処理
櫻田 大樹; 田中 稜介; 杉浦 陽介
Volume:114, Number:394, First page:109, Last page:112, Jan. 2015
Japanese
ISSN:0913-5685, CiNii Articles ID:110010001730, CiNii Books ID:AA1123312X - CSD係数FIRフィルタ設計における分枝限定法のGPUを用いた高速化に関する一検討—An Accelerated Design of FIR Filters with CSD Coefficient Based on Branch and Bound Method Using GPU—無線通信システム
大島 純; 杉浦 陽介; 相川 直幸
Volume:114, Number:395, First page:113, Last page:116, Jan. 2015
Japanese
ISSN:0913-5685, CiNii Articles ID:110010001731, CiNii Books ID:AA1123312X - 電気回路E-ラーニングの学習者支援インターフェース強化—Reinforcement of learner support interface in the electric circuit E-learning system—教育フロンティア研究会 技術者倫理と教育一般
髙橋 侑也; 杉浦 陽介; 相川 直幸
Volume:2014, Number:18・19・21-24, First page:5, Last page:9, 05 Sep. 2014
Japanese
CiNii Articles ID:40020225002, CiNii Books ID:AA11753039 - 適応ノッチフィルタを用いた音声解析に基づく複数のハウリングに対する抑圧システム—Suppression System for Multiple Howling Signal Based on Analyzing Speech Signal Using Adaptive Notch Filters
上原 裕貴; 杉浦 陽介; 相川 直幸
Volume:27, First page:179, Last page:184, Aug. 2014
Japanese
CiNii Articles ID:40020153205 - 単調増加勾配を用いた適応ノッチフィルタの周波数推定精度の改善—Improvement of Frequency Estimation Accuracy in Adaptive Notch Filter Using Monotonically Increasing Gradient
杉浦 陽介
Volume:27, First page:209, Last page:212, Aug. 2014
Japanese
CiNii Articles ID:40020153280 - 遅延の小さい低域通過FIRディジタル微分器の一設計法—A design method of lowpass FIR digital differentiators with reduced delay—信号処理
吉田 嵩; 杉浦 陽介; 相川 直幸
Volume:114, Number:124, First page:243, Last page:246, Jul. 2014
Japanese
ISSN:0913-5685, CiNii Articles ID:110009946155, CiNii Books ID:AA1123312X - 1次元トップハット変換を用いたスペクトルサブトラクション法に基づく風雑音抑圧—A Wind Noise Suppression Based on Spectral Subtraction Using One Dimensional Top-Hat Transform
杉浦 陽介; 相川 直幸
Volume:114, Number:126, First page:247, Last page:252, Jul. 2014
Japanese
ISSN:0913-5685, CiNii Articles ID:110009946156, CiNii Books ID:AA1123312X - 阻止域にリプルを持つFIRディジタル帯域通過最大平たん微分器の一設計法—A design method of FIR band-pass maximally flat digital differentiators having ripple in the stopband—回路とシステム
吉田 嵩; 杉浦 陽介; 相川 直幸
Volume:113, Number:463, First page:145, Last page:149, Mar. 2014
Japanese
ISSN:0913-5685, CiNii Articles ID:110009862152, CiNii Books ID:AA1123312X - 狭帯域無線システムのための阻止域最大平たんFIRノッチフィルタの設計—Designing Maximally Flat Stopband FIR Notch Filter for Narrowband Radio Systems—無線通信システム
重岩 祐介; 杉浦 陽介; 相川 直幸
Volume:113, Number:386, First page:223, Last page:228, Jan. 2014
Japanese
ISSN:0913-5685, CiNii Articles ID:110009825539, CiNii Books ID:AA1123312X - 適応ノッチフィルタを用いた音声解析に基づくハウリングキャンセラ
上原,裕貴; 杉浦,陽介; 相川,直幸
Volume:113, Number:464, First page:41, Last page:45, 2014
Japanese
ISSN:0913-5685, CiNii Articles ID:110009862134, CiNii Books ID:AA1123312X - 任意の周波数ゲインをもつくし型フィルタ—A Comb Filter with Desired Frequency Gains—基礎信号処理
杉浦 陽介; 川村 新; 飯國 洋二
Volume:24, First page:338, Last page:343, Aug. 2011
Japanese
CiNii Articles ID:40019430874 - 任意の周波数ゲインをもつくし型フィルタの設計—Design of a comb filter with desired frequency gains—応用音響
杉浦 陽介; 川村 新; 飯國 洋二
Volume:111, Number:26, First page:149, Last page:154, May 2011
Japanese
ISSN:0913-5685, CiNii Articles ID:110008725585, CiNii Books ID:AA1123312X - Design of an IIR comb filter with variable bandwidths
杉浦 陽介; 川村 新; 飯國 洋二
Volume:94, Number:1, First page:41, Last page:43, Jan. 2011, [Reviewed]
Japanese
ISSN:0913-5707, CiNii Articles ID:110008007082, CiNii Books ID:AN10013345 - A-4-45 Evaruation of a howling canceller using IIR comb filter
Sugiura Yosuke; Kawamura Arata; Iiguni Youji
Proceedings of the Society Conference of IEICE, Volume:2009, First page:108, 01 Sep. 2009
The Institute of Electronics, Information and Communication Engineers, Japanese
CiNii Articles ID:110007881421, CiNii Books ID:AN10489017 - A new howling canceller using IIR comb filter
Sugiura Yousuke; Kawamura Arata; Iiguni Youji
Proceedings of the Annual Conference of the Institute of Systems, Control and Information Engineers, Volume:SCI09, First page:643, Last page:643, 2009
ハウリングはスピーカ・マイクロホン間の閉ループにおいて,位相条件と振幅条件が満たされた場合に生じる共振現象である.従来法では,ハウリングの位相条件が,スピーカ-マイクロホン間の距離に依存して決まることに着目し,距離推定により得られた複数のハウリング周波数の候補を,縦続接続型ノッチフィルタにより除去する.しかし,従来法では演算量が多く,さらに隣接するフィルタの除去帯域が重複するため,出力音質が大きく劣化するという問題もある.そこで本稿では,比較的演算量の少ないIIRくし型フィルタを用いたハウリングキャンセラを提案する.IIRくし型フィルタは,隣接する除去帯域が重複しないように設計できるので,出力音質の劣化を抑えることができる.実環境における実験結果から,提案法が従来法よりも優れたハウリング除去性能を有することを明らかにする.
The Institute of Systems, Control and Information Engineers
DOI:https://doi.org/10.11509/sci.sci09.0.643.0
DOI ID:10.11509/sci.sci09.0.643.0, CiNii Articles ID:130006984392
- ディジタル信号処理におけるシステム最適化技術 : 基礎技術から音声・音響信号処理, 産業応用と情報システムまで
電気学会・ディジタル信号処理システム最適化技術調査専門委員会, [Joint work]
Oct. 2021
Japanese, Total pages:xiii, 263p, 図版 [2] p
CiNii Books:http://ci.nii.ac.jp/ncid/BC10771945
ISBN:9784274227608, CiNii Books ID:BC10771945
- THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN
- THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS
- IEEE
- Speech Enhancement Network using Perceptual and Physical Mathematical Model
Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Grant-in-Aid for Scientific Research (C), 01 Apr. 2021 - 31 Mar. 2024
Saitama University
Grant amount(Total):2990000, Direct funding:2300000, Indirect funding:690000
Grant number:21K11953 - Development of Speech Enhancement Algorithm on Highly Noisy Environment Using Noise Database
Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Grant-in-Aid for Young Scientists (B), 01 Apr. 2016 - 31 Mar. 2018
SUGIURA Yosuke, Saitama University
Grant amount(Total):1300000, Direct funding:1000000, Indirect funding:300000
We proposed accurate analysis methods for speech and and a speech enhancement architecture using deep neural network (DNN) in order to develop a speech enhancement algorithm on highly noisy environment. The former is an method to estimate the speech and noise accurately from the noisy speech including the non-stationary noise. The latter is designed analytically so as to be a structure matching the speech enhancement. They are expected to be important techniques in the environment affected by noise, such as the hands-free speech communication or the speech recognition on the AI speaker.
Grant number:16K18111