SEARCH

Search Details

NISHIZAWA Yusuke
Natural science courseAssociate Professor

Researcher information

■ Research Keyword
  • Inequalities
  • Point bifurcations.
  • Heterodimensional tangencies
  • Homoclinic tangencies
  • Chaotic dynamical systems
■ Field Of Study
  • Natural sciences, Basic analysis
  • Natural sciences, Mathematical analysis
  • Natural sciences, Geometry

Performance information

■ Paper
  • The arithmetic-geometric mean inequality from the integral of $1/t$               
    Kuniya Ibaragi, Yusuke Nishizawa, Noriyuki Ohira
    Aust.J.Math.Anal.Appl., Volume:21, Number:2, First page:1, Last page:4, Nov. 2024, [Reviewed]
    English, Scientific journal
  • Approximations by the fractional function of the sum of two functions converging to $e$               
    Misuzu Aoki, Yusuke Nishizawa, Rukiya Suzuki, Gohki Takamori
    Appl.Math.E-Notes, Volume:24, First page:19, Last page:26, Mar. 2024, [Reviewed]
    English, Scientific journal
  • Boundness of the power exponential function $a^{2b} +b^{2a}$               
    Yusuke Nishizawa; Yukuhito Yasuda
    Aust.J.Math.Anal.Appl., Volume:21, Number:1, First page:1, Last page:13, Feb. 2024, [Reviewed]
    English, Scientific journal
  • Sharp inequalities of Iyengar-Madhava Rao-Nanjundiah type including $cos(x/√3 + ax^r)$               
    Keisuke Murata; Ryota Nakagawa; Yusuke Nishizawa; Atsuya Sakamoto
    Journal of Mathematical Inequalities, Volume:17, Number:2, First page:671, Last page:681, Nov. 2023, [Reviewed]
    Element d.o.o., English, Scientific journal
    DOI:https://doi.org/10.7153/jmi-2023-17-44
    DOI ID:10.7153/jmi-2023-17-44, ISSN:1846-579X
  • Some inequalities related to the power exponential function $a^{rb} +b^{ra}$               
    Mehdi Hassani; Yusuke Nishizawa
    Appl.Math.E-Notes, Volume:23, First page:237, Last page:242, Oct. 2023, [Reviewed]
    English, Scientific journal
  • The arithmetic-geometric mean inequality resulting from the function containing $e^x$ and $x^e$,               
    Yu Konaga; Yusuke Nishizawa; Ryuji Saito; Riki Sato
    J.Inequal.Spec.Funct., Volume:14, Number:3, First page:1, Last page:6, Aug. 2023, [Reviewed]
    English, Scientific journal
  • Sharped Jordan's type inequalities with exponential approximations               
    Nachi Kasuga, Mai Nakasuji, Yusuke Nishizawa, Takuma Sekine
    Journal of Mathematical Inequalities, Volume:17, Number:4, First page:1539, Last page:1550, Feb. 2023, [Reviewed]
    Element d.o.o., English, Scientific journal
    DOI:https://doi.org/10.7153/jmi-2023-17-101
    DOI ID:10.7153/jmi-2023-17-101, ISSN:1846-579X
  • A simple proof of Iv\'{a}dy double inequality               
    Naoki Kobayashi, Yusuke Nishizawa, Kenshiroh Okazaki
    J.Inequal.Spec.Funct., Volume:14, Number:1, First page:16, Last page:20, Feb. 2023, [Reviewed]
    English, Scientific journal
  • Some inequalities for the hyperbolic tangent related $\sqrt{1-exp\left( -\frac{x^2},{\left(1 +x^2 \right)^p} \right)}$               
    Fuuya Araki; Yuichiro Matsui; Hiroki Nakajima; Yusuke Nishizawa
    J.Inequal.Spec.Funct., Volume:13, Number:3, First page:1, Last page:9, Aug. 2022, [Reviewed]
    English, Scientific journal
  • Three inequalities associated with Rado inequality               
    Rin Miyao; Yusuke Nishizawa; Keigo Takamura
    Aust.J.Math.Anal.Appl., Volume:19, Number:1, First page:1, Last page:8, Apr. 2022, [Reviewed]
    English, Scientific journal
  • Refinements of Arithmetic mean-Geometric mean inequality associated with the number $e$               
    Mehdi Hassani; Valmir Krasniqi; Yusuke Nishizawa
    J.Inequal.Spec.Funct., Volume:12, Number:2, First page:23, Last page:35, Mar. 2021, [Reviewed]
    English, Scientific journal
  • Rational expressions of arithmetic and geometric means for the sequence $(n^p)_{n\in \mathbb{N } }$ and the geometric progression               
    Miu Kinegawa; Sayaka Miyamoto; Yusuke Nishizawa
    Aust.J.Math.Anal.Appl., Volume:18, Number:1, First page:1, Last page:7, Mar. 2021, [Reviewed]
    English, Scientific journal
  • The best possible constants of the inequalities with power exponential functions
    Yusuke Nishizawa
    Indian Journal of Pure and Applied Mathematics, Volume:51, Number:4, First page:1761, Last page:1768, 2020, [Reviewed]
    Springer Science and Business Media LLC, English, Scientific journal
    DOI:https://doi.org/10.1007/s13226-020-0495-4
    DOI ID:10.1007/s13226-020-0495-4, ISSN:0019-5588, eISSN:0975-7465
  • A lower bound of the power exponential function               
    Yusuke Nishizawa
    J.Class.Anal., Volume:15, Number:1, First page:1, Last page:8, Jan. 2020, [Reviewed]
    English, Scientific journal
  • 数学科目におけるWebclassを用いたCBTの実施               
    石田弘隆; 西澤由輔
    Number:64, First page:19, Last page:25, Mar. 2018, [Reviewed]
    Japanese, Research institution
  • Extended a constant part of Redheffer's type inequalities
    Yusuke Nishizawa
    Tamkang Journal of Mathematics, Volume:49, Number:1, First page:79, Last page:83, 2018, [Reviewed]
    J-L. Li and Y-L. Li \cite{LL2007} gave the following Redheffer's type inequality; \begin{equation*} \frac{ 1 -\left( \frac{x},{\pi} \right)^2 },{ \sqrt{1 + 3 \left( \frac{x},{\pi} \right)^4 } } > \frac{\sin{x } },{x} \end{equation*} holds for $0 < x < \pi$, where the constant $3$ is the best possible. In this paper, we establish two inequalities extended the constant part of the above inequality.
    Tamkang Journal of Mathematics, English, Scientific journal
    DOI:https://doi.org/10.5556/j.tkjm.49.2018.2505
    DOI ID:10.5556/j.tkjm.49.2018.2505, ISSN:0049-2930, eISSN:2073-9826
  • Symmetric inequalities with power-exponential functions               
    Yusuke Nishizawa
    Indian Journal of Pure and Applied Mathematics, Volume:48, Number:3, First page:335, Last page:344, 2017, [Reviewed]
    Springer Science and Business Media LLC, English, Scientific journal
    DOI:https://doi.org/10.1007/s13226-017-0230-y
    DOI ID:10.1007/s13226-017-0230-y, ISSN:0019-5588, eISSN:0975-7465, Web of Science ID:WOS:000409887600003
  • Refined quadratic estimations of Shafer’s inequality               
    Yusuke Nishizawa
    Journal of Inequalities and Applications, Volume:2017, Number:1, 2017, [Reviewed]
    Springer Science and Business Media LLC, English, Scientific journal
    DOI:https://doi.org/10.1186/s13660-017-1312-4
    DOI ID:10.1186/s13660-017-1312-4, ISSN:1029-242X, eISSN:1029-242X, Web of Science ID:WOS:000394848600001
  • Double inequalities derived from the arithmetic-geometric-harmonic mean inequalities with power exponential functions               
    Yusuke nishizawa
    Research reports of National Institute of Technology,Ube College, Number:62, First page:9, Last page:16, Mar. 2016, [Reviewed]
    English, Research institution
  • Sharp exponential approximate inequalities for trigonometric functions               
    Yusuke Nishizawa
    Results in Mathematics, Volume:71, Number:3-4, First page:609, Last page:621, 2016, [Reviewed]
    Springer Science and Business Media LLC, English, Scientific journal
    DOI:https://doi.org/10.1007/s00025-016-0566-3
    DOI ID:10.1007/s00025-016-0566-3, ISSN:1422-6383, eISSN:1420-9012, Web of Science ID:WOS:000401007300004
  • Extended constant parts of Becker-Stark's and Shafer-Fink's inequalities
    Yusuke Nishizawa
    Tamkang Journal of Mathematics, Volume:47, Number:4, First page:385, Last page:391, 2016, [Reviewed]
    In this paper, we give some inequalities which are extended constant parts of Becker-Stark's and Shafer-Fink's inequality.
    Tamkang Journal of Mathematics, English, Scientific journal
    DOI:https://doi.org/10.5556/j.tkjm.47.2016.2024
    DOI ID:10.5556/j.tkjm.47.2016.2024, ISSN:0049-2930, eISSN:2073-9826, SCOPUS ID:84998546929
  • A stronger inequality of Cîrtoaje's one with power exponential functions               
    Mitsuhiro Miyagi; Yusuke Nishizawa
    Journal of Nonlinear Sciences and Applications, Volume:8, Number:3, First page:224, Last page:230, 2016, [Reviewed]
    International Scientific Research Publications MY SDN. BHD., English, Scientific journal
    DOI:https://doi.org/10.22436/jnsa.008.03.06
    DOI ID:10.22436/jnsa.008.03.06, ISSN:2008-1898, eISSN:2008-1901, Web of Science ID:WOS:000352726900006
  • An elementary proof of some inequality derived from the function $(b^{x} -a^{x})/x$               
    Yusuke Nishizawa; Mitsuhiro Miyagi
    Research reports of National Institute of Technology, Ube College, Number:61, First page:41, Last page:44, Mar. 2015, [Reviewed]
    English, Research institution
  • Sharp Becker-Stark’s type inequalities with power exponential functions               
    Yusuke Nishizawa
    Journal of Inequalities and Applications, Volume:2015, Number:1, 2015, [Reviewed]
    Springer Science and Business Media LLC, English, Scientific journal
    DOI:https://doi.org/10.1186/s13660-015-0932-9
    DOI ID:10.1186/s13660-015-0932-9, ISSN:1029-242X, eISSN:1029-242X, Web of Science ID:WOS:000366831900001
  • Extension of an inequality with power exponential functions
    Mitsuhiro Miyagi; Yusuke Nishizawa
    Tamkang Journal of Mathematics, Volume:46, Number:4, First page:427, Last page:433, 2015, [Reviewed]
    V.\ C\^\i rtoaje et al. \cite{C2009} conjectured and proved \cite{C2011, M2009} that the inequality $a^{rb} + b^{ra} \leq 2$ holds for all nonnegative numbers $r \leq 3$ and nonnegative real numbers $a, b$ with $a +b=2$. In this paper, we will show that $a^{rb} + b^{ra} \leq 2$ holds for all nonnegative $r\geq 3$ and all nonnegative real numbers $a, b$ with $a +b =2$ and some conditions. This gives an extended inequality of conjectured by V.\ C\^\i rtoaje.
    Tamkang Journal of Mathematics, English, Scientific journal
    DOI:https://doi.org/10.5556/j.tkjm.46.2015.1831
    DOI ID:10.5556/j.tkjm.46.2015.1831, ISSN:0049-2930, eISSN:2073-9826, SCOPUS ID:84948747630
  • Extended constant parts of wilker types and cusa-huygens types inequalities               
    Yusuke Nishizawa
    Far East J.Math.Sci., Volume:98, Number:5, First page:579, Last page:598, 2015, [Reviewed]
    In this paper, we give some inequalities which are extended constant parts of Wilker types and Cusa-Huygens types inequalities.
    Pushpa Publishing House, English, Scientific journal
    DOI:https://doi.org/10.17654/FJMSNov2015_579_598
    DOI ID:10.17654/FJMSNov2015_579_598, ISSN:0972-0871, SCOPUS ID:84943766638
  • Sharpening of Jordan’s type and Shafer–Fink’s type inequalities with exponential approximations               
    Yusuke Nishizawa
    Applied Mathematics and Computation, Volume:269, First page:146, Last page:154, 2015, [Reviewed]
    Elsevier BV, English, Scientific journal
    DOI:https://doi.org/10.1016/j.amc.2015.07.041
    DOI ID:10.1016/j.amc.2015.07.041, ISSN:0096-3003, eISSN:1873-5649, Web of Science ID:WOS:000361771500015
  • A short proof of an open inequality with power-exponential functions               
    Mitsuhiro Miyagi; Yusuke Nishizawa
    Aust.J.Math.Anal.Appl., Volume:11, Number:1, First page:1, Last page:3, 2014, [Reviewed]
    English, Scientific journal
  • Proof of an open inequality with double power-exponential functions
    Mitsuhiro Miyagi; Yusuke Nishizawa
    Journal of Inequalities and Applications, Volume:2013, Number:1, 2013, [Reviewed]
    Springer Science and Business Media LLC, English, Scientific journal
    DOI:https://doi.org/10.1186/1029-242x-2013-468
    DOI ID:10.1186/1029-242x-2013-468, ISSN:1025-5834, eISSN:1029-242X, SCOPUS ID:84897595522
  • Heterodimensional tangencies leading to hyperbolic sets and wild hyperbolic strange attractors               
    Yusuke Nishizawa
    RIMS Kokyuroku, Number:1768, First page:38, Last page:54, Oct. 2011
    Japanese, Research institution
  • 一次元極限葉層構造をもつ3次元$C^1$微分同相写像の力学系について,               
    Yusuke Nishizawa
    Hokkaidou University Technical Report Series in Mathematics, Number:148, First page:35, Last page:42, Feb. 2011
    Japanese, Symposium
  • オイラーの多面体定理に基づいた数学の教材開発について‐コンピュータ・情報機器を用いた授業を通して‐               
    三田満男; 西澤由輔; 佐藤宏平
    Number:4, First page:17, Last page:29, 2011, [Reviewed]
    Japanese, Research institution
  • Simultaneous point bifurcations and bubbles for two parameter family of cubic polynomials               
    Eiichi Mitsukura; Yusuke Nishizawa
    Far East J.Dynam.Syst., Volume:15, Number:2, First page:67, Last page:82, 2011, [Reviewed]
    English, Scientific journal
  • Heterodimenional tangencies から導き出されるstrange attractorsと$C^{1}$-robust homoclinic tangenciesについて               
    Yusuke Nishizawa
    RIMS Kokyuroku, Number:1688, First page:164, Last page:174, May 2010
    Japanese, Research institution
  • Heterodimensional tangency and hyperbolic sets               
    Yusuke Nishizawa
    Hokkaidou University Technical Report Series in Mathematics, Number:142, First page:220, Last page:227, Feb. 2010
    Japanese, Symposium
  • 高校生に対する現代数学の導入の一例‐カオス,フラクタルとはなにか?‐               
    三田満男; 西澤由輔
    Number:3, First page:47, Last page:60, 2010, [Reviewed]
  • Heterodimensional tangencies on cycles leading to strange attractors               
    Shin Kiriki; Yusuke Nishizawa; Teruhiko Soma
    Discrete Contin.Dyn.Syst., Volume:27, Number:1, First page:285, Last page:300, 2010, [Reviewed]
    American Institute of Mathematical Sciences (AIMS), English, Scientific journal
    DOI:https://doi.org/10.3934/dcds.2010.27.285
    DOI ID:10.3934/dcds.2010.27.285, ISSN:1553-5231, Web of Science ID:WOS:000274261300014
  • Heterodimenional tangencies on cycle leading to strange attractors               
    Yusuke Nishizawa
    Hokkaidou University Technical Report Series in Mathematics, Number:140, First page:61, Last page:65, Feb. 2009
    Japanese, Symposium
  • Existence of horseshoe sets with nondegenerate one-sided homoclinic tangencies in ${\mathbb R}^{3}$               
    Yusuke Nishizawa
    Hokkaido Mathematical Journal, Volume:37, Number:1, First page:133, Last page:145, 2008, [Reviewed]
    Department of Mathematics, Hokkaido University, English, Scientific journal
    DOI:https://doi.org/10.14492/hokmj/1253539582
    DOI ID:10.14492/hokmj/1253539582, ISSN:0385-4035, SCOPUS ID:85035261976
■ Research projects
  • ブレンダーとヘテロ次元サイクルをもつ微分同相写像の力学系               
    2009 - 2011
    Grant amount(Total):1000000, Direct funding:1000000
    Grant number:09J04794
  • ホモクリニック接触をもつ微分同相写像の力学系の研究、ヘテロ次元接触を含むヘテロ次元サイクルをもつ微分同相写像の力学系の研究、点分岐をもつ一次元力学系の研究               
    Competitive research funding
TOP