The arithmetic-geometric mean inequality from the integral of $1/t$
Kuniya Ibaragi, Yusuke Nishizawa, Noriyuki Ohira
Aust.J.Math.Anal.Appl., Volume:21, Number:2, First page:1, Last page:4, Nov. 2024, [Reviewed]
English, Scientific journal
Approximations by the fractional function of the sum of two functions converging to $e$
Misuzu Aoki, Yusuke Nishizawa, Rukiya Suzuki, Gohki Takamori
Appl.Math.E-Notes, Volume:24, First page:19, Last page:26, Mar. 2024, [Reviewed]
English, Scientific journal
Boundness of the power exponential function $a^{2b} +b^{2a}$
Yusuke Nishizawa; Yukuhito Yasuda
Aust.J.Math.Anal.Appl., Volume:21, Number:1, First page:1, Last page:13, Feb. 2024, [Reviewed]
English, Scientific journal
Sharp inequalities of Iyengar-Madhava Rao-Nanjundiah type including $cos(x/√3 + ax^r)$ Keisuke Murata; Ryota Nakagawa; Yusuke Nishizawa; Atsuya Sakamoto
Journal of Mathematical Inequalities,
Volume:17,
Number:2,
First page:671,
Last page:681, Nov. 2023,
[Reviewed]Element d.o.o., English, Scientific journal
DOI:https://doi.org/10.7153/jmi-2023-17-44DOI ID:10.7153/jmi-2023-17-44,
ISSN:1846-579X Some inequalities related to the power exponential function $a^{rb} +b^{ra}$
Mehdi Hassani; Yusuke Nishizawa
Appl.Math.E-Notes, Volume:23, First page:237, Last page:242, Oct. 2023, [Reviewed]
English, Scientific journal
The arithmetic-geometric mean inequality resulting from the function containing $e^x$ and $x^e$,
Yu Konaga; Yusuke Nishizawa; Ryuji Saito; Riki Sato
J.Inequal.Spec.Funct., Volume:14, Number:3, First page:1, Last page:6, Aug. 2023, [Reviewed]
English, Scientific journal
Sharped Jordan's type inequalities with exponential approximations Nachi Kasuga, Mai Nakasuji, Yusuke Nishizawa, Takuma Sekine
Journal of Mathematical Inequalities,
Volume:17,
Number:4,
First page:1539,
Last page:1550, Feb. 2023,
[Reviewed]Element d.o.o., English, Scientific journal
DOI:https://doi.org/10.7153/jmi-2023-17-101DOI ID:10.7153/jmi-2023-17-101,
ISSN:1846-579X A simple proof of Iv\'{a}dy double inequality
Naoki Kobayashi, Yusuke Nishizawa, Kenshiroh Okazaki
J.Inequal.Spec.Funct., Volume:14, Number:1, First page:16, Last page:20, Feb. 2023, [Reviewed]
English, Scientific journal
Some inequalities for the hyperbolic tangent related $\sqrt{1-exp\left( -\frac{x^2},{\left(1 +x^2 \right)^p} \right)}$
Fuuya Araki; Yuichiro Matsui; Hiroki Nakajima; Yusuke Nishizawa
J.Inequal.Spec.Funct., Volume:13, Number:3, First page:1, Last page:9, Aug. 2022, [Reviewed]
English, Scientific journal
Three inequalities associated with Rado inequality
Rin Miyao; Yusuke Nishizawa; Keigo Takamura
Aust.J.Math.Anal.Appl., Volume:19, Number:1, First page:1, Last page:8, Apr. 2022, [Reviewed]
English, Scientific journal
Refinements of Arithmetic mean-Geometric mean inequality associated with the number $e$
Mehdi Hassani; Valmir Krasniqi; Yusuke Nishizawa
J.Inequal.Spec.Funct., Volume:12, Number:2, First page:23, Last page:35, Mar. 2021, [Reviewed]
English, Scientific journal
Rational expressions of arithmetic and geometric means for the sequence $(n^p)_{n\in \mathbb{N } }$ and the geometric progression
Miu Kinegawa; Sayaka Miyamoto; Yusuke Nishizawa
Aust.J.Math.Anal.Appl., Volume:18, Number:1, First page:1, Last page:7, Mar. 2021, [Reviewed]
English, Scientific journal
The best possible constants of the inequalities with power exponential functionsYusuke Nishizawa
Indian Journal of Pure and Applied Mathematics,
Volume:51,
Number:4,
First page:1761,
Last page:1768, 2020,
[Reviewed]Springer Science and Business Media LLC, English, Scientific journal
DOI:https://doi.org/10.1007/s13226-020-0495-4DOI ID:10.1007/s13226-020-0495-4,
ISSN:0019-5588,
eISSN:0975-7465 A lower bound of the power exponential function
Yusuke Nishizawa
J.Class.Anal., Volume:15, Number:1, First page:1, Last page:8, Jan. 2020, [Reviewed]
English, Scientific journal
数学科目におけるWebclassを用いたCBTの実施
石田弘隆; 西澤由輔
Number:64, First page:19, Last page:25, Mar. 2018, [Reviewed]
Japanese, Research institution
Extended a constant part of Redheffer's type inequalitiesYusuke Nishizawa
Tamkang Journal of Mathematics,
Volume:49,
Number:1,
First page:79,
Last page:83, 2018,
[Reviewed]J-L. Li and Y-L. Li \cite{LL2007} gave the following Redheffer's type inequality; \begin{equation*} \frac{ 1 -\left( \frac{x},{\pi} \right)^2 },{ \sqrt{1 + 3 \left( \frac{x},{\pi} \right)^4 } } > \frac{\sin{x } },{x} \end{equation*} holds for $0 < x < \pi$, where the constant $3$ is the best possible. In this paper, we establish two inequalities extended the constant part of the above inequality.
Tamkang Journal of Mathematics, English, Scientific journal
DOI:https://doi.org/10.5556/j.tkjm.49.2018.2505DOI ID:10.5556/j.tkjm.49.2018.2505,
ISSN:0049-2930,
eISSN:2073-9826 Symmetric inequalities with power-exponential functions Yusuke Nishizawa
Indian Journal of Pure and Applied Mathematics,
Volume:48,
Number:3,
First page:335,
Last page:344, 2017,
[Reviewed]Springer Science and Business Media LLC, English, Scientific journal
DOI:https://doi.org/10.1007/s13226-017-0230-yDOI ID:10.1007/s13226-017-0230-y,
ISSN:0019-5588,
eISSN:0975-7465,
Web of Science ID:WOS:000409887600003 Refined quadratic estimations of Shafer’s inequality Yusuke Nishizawa
Journal of Inequalities and Applications,
Volume:2017,
Number:1, 2017,
[Reviewed]Springer Science and Business Media LLC, English, Scientific journal
DOI:https://doi.org/10.1186/s13660-017-1312-4DOI ID:10.1186/s13660-017-1312-4,
ISSN:1029-242X,
eISSN:1029-242X,
Web of Science ID:WOS:000394848600001 Double inequalities derived from the arithmetic-geometric-harmonic mean inequalities with power exponential functions
Yusuke nishizawa
Research reports of National Institute of Technology,Ube College, Number:62, First page:9, Last page:16, Mar. 2016, [Reviewed]
English, Research institution
Sharp exponential approximate inequalities for trigonometric functions Yusuke Nishizawa
Results in Mathematics,
Volume:71,
Number:3-4,
First page:609,
Last page:621, 2016,
[Reviewed]Springer Science and Business Media LLC, English, Scientific journal
DOI:https://doi.org/10.1007/s00025-016-0566-3DOI ID:10.1007/s00025-016-0566-3,
ISSN:1422-6383,
eISSN:1420-9012,
Web of Science ID:WOS:000401007300004 Extended constant parts of Becker-Stark's and Shafer-Fink's inequalitiesYusuke Nishizawa
Tamkang Journal of Mathematics,
Volume:47,
Number:4,
First page:385,
Last page:391, 2016,
[Reviewed]In this paper, we give some inequalities which are extended constant parts of Becker-Stark's and Shafer-Fink's inequality.
Tamkang Journal of Mathematics, English, Scientific journal
DOI:https://doi.org/10.5556/j.tkjm.47.2016.2024DOI ID:10.5556/j.tkjm.47.2016.2024,
ISSN:0049-2930,
eISSN:2073-9826,
SCOPUS ID:84998546929 A stronger inequality of Cîrtoaje's one with power exponential functions Mitsuhiro Miyagi; Yusuke Nishizawa
Journal of Nonlinear Sciences and Applications,
Volume:8,
Number:3,
First page:224,
Last page:230, 2016,
[Reviewed]International Scientific Research Publications MY SDN. BHD., English, Scientific journal
DOI:https://doi.org/10.22436/jnsa.008.03.06DOI ID:10.22436/jnsa.008.03.06,
ISSN:2008-1898,
eISSN:2008-1901,
Web of Science ID:WOS:000352726900006 An elementary proof of some inequality derived from the function $(b^{x} -a^{x})/x$
Yusuke Nishizawa; Mitsuhiro Miyagi
Research reports of National Institute of Technology, Ube College, Number:61, First page:41, Last page:44, Mar. 2015, [Reviewed]
English, Research institution
Sharp Becker-Stark’s type inequalities with power exponential functions Yusuke Nishizawa
Journal of Inequalities and Applications,
Volume:2015,
Number:1, 2015,
[Reviewed]Springer Science and Business Media LLC, English, Scientific journal
DOI:https://doi.org/10.1186/s13660-015-0932-9DOI ID:10.1186/s13660-015-0932-9,
ISSN:1029-242X,
eISSN:1029-242X,
Web of Science ID:WOS:000366831900001 Extension of an inequality with power exponential functionsMitsuhiro Miyagi; Yusuke Nishizawa
Tamkang Journal of Mathematics,
Volume:46,
Number:4,
First page:427,
Last page:433, 2015,
[Reviewed]V.\ C\^\i rtoaje et al. \cite{C2009} conjectured and proved \cite{C2011, M2009} that the inequality $a^{rb} + b^{ra} \leq 2$ holds for all nonnegative numbers $r \leq 3$ and nonnegative real numbers $a, b$ with $a +b=2$. In this paper, we will show that $a^{rb} + b^{ra} \leq 2$ holds for all nonnegative $r\geq 3$ and all nonnegative real numbers $a, b$ with $a +b =2$ and some conditions. This gives an extended inequality of conjectured by V.\ C\^\i rtoaje.
Tamkang Journal of Mathematics, English, Scientific journal
DOI:https://doi.org/10.5556/j.tkjm.46.2015.1831DOI ID:10.5556/j.tkjm.46.2015.1831,
ISSN:0049-2930,
eISSN:2073-9826,
SCOPUS ID:84948747630 Extended constant parts of wilker types and cusa-huygens types inequalities Yusuke Nishizawa
Far East J.Math.Sci.,
Volume:98,
Number:5,
First page:579,
Last page:598, 2015,
[Reviewed]In this paper, we give some inequalities which are extended constant parts of Wilker types and Cusa-Huygens types inequalities.
Pushpa Publishing House, English, Scientific journal
DOI:https://doi.org/10.17654/FJMSNov2015_579_598DOI ID:10.17654/FJMSNov2015_579_598,
ISSN:0972-0871,
SCOPUS ID:84943766638 Sharpening of Jordan’s type and Shafer–Fink’s type inequalities with exponential approximations Yusuke Nishizawa
Applied Mathematics and Computation,
Volume:269,
First page:146,
Last page:154, 2015,
[Reviewed]Elsevier BV, English, Scientific journal
DOI:https://doi.org/10.1016/j.amc.2015.07.041DOI ID:10.1016/j.amc.2015.07.041,
ISSN:0096-3003,
eISSN:1873-5649,
Web of Science ID:WOS:000361771500015 A short proof of an open inequality with power-exponential functions
Mitsuhiro Miyagi; Yusuke Nishizawa
Aust.J.Math.Anal.Appl., Volume:11, Number:1, First page:1, Last page:3, 2014, [Reviewed]
English, Scientific journal
Heterodimensional tangencies leading to hyperbolic sets and wild hyperbolic strange attractors
Yusuke Nishizawa
RIMS Kokyuroku, Number:1768, First page:38, Last page:54, Oct. 2011
Japanese, Research institution
一次元極限葉層構造をもつ3次元$C^1$微分同相写像の力学系について,
Yusuke Nishizawa
Hokkaidou University Technical Report Series in Mathematics, Number:148, First page:35, Last page:42, Feb. 2011
Japanese, Symposium
オイラーの多面体定理に基づいた数学の教材開発について‐コンピュータ・情報機器を用いた授業を通して‐
三田満男; 西澤由輔; 佐藤宏平
Number:4, First page:17, Last page:29, 2011, [Reviewed]
Japanese, Research institution
Simultaneous point bifurcations and bubbles for two parameter family of cubic polynomials
Eiichi Mitsukura; Yusuke Nishizawa
Far East J.Dynam.Syst., Volume:15, Number:2, First page:67, Last page:82, 2011, [Reviewed]
English, Scientific journal
Heterodimenional tangencies から導き出されるstrange attractorsと$C^{1}$-robust homoclinic tangenciesについて
Yusuke Nishizawa
RIMS Kokyuroku, Number:1688, First page:164, Last page:174, May 2010
Japanese, Research institution
Heterodimensional tangency and hyperbolic sets
Yusuke Nishizawa
Hokkaidou University Technical Report Series in Mathematics, Number:142, First page:220, Last page:227, Feb. 2010
Japanese, Symposium
高校生に対する現代数学の導入の一例‐カオス,フラクタルとはなにか?‐
三田満男; 西澤由輔
Number:3, First page:47, Last page:60, 2010, [Reviewed]
Heterodimensional tangencies on cycles leading to strange attractors Shin Kiriki; Yusuke Nishizawa; Teruhiko Soma
Discrete Contin.Dyn.Syst.,
Volume:27,
Number:1,
First page:285,
Last page:300, 2010,
[Reviewed]American Institute of Mathematical Sciences (AIMS), English, Scientific journal
DOI:https://doi.org/10.3934/dcds.2010.27.285DOI ID:10.3934/dcds.2010.27.285,
ISSN:1553-5231,
Web of Science ID:WOS:000274261300014 Heterodimenional tangencies on cycle leading to strange attractors
Yusuke Nishizawa
Hokkaidou University Technical Report Series in Mathematics, Number:140, First page:61, Last page:65, Feb. 2009
Japanese, Symposium
Existence of horseshoe sets with nondegenerate one-sided homoclinic tangencies in ${\mathbb R}^{3}$ Yusuke Nishizawa
Hokkaido Mathematical Journal,
Volume:37,
Number:1,
First page:133,
Last page:145, 2008,
[Reviewed]Department of Mathematics, Hokkaido University, English, Scientific journal
DOI:https://doi.org/10.14492/hokmj/1253539582DOI ID:10.14492/hokmj/1253539582,
ISSN:0385-4035,
SCOPUS ID:85035261976